精英家教网 > 高中数学 > 题目详情

下列函数中,图象与函数y=2x的图象关于y轴对称的是


  1. A.
    y=-2x
  2. B.
    y=-2-x
  3. C.
    y=2-x
  4. D.
    y=2x+2-x
C
分析:本题是研究两个底数互为倒数的函数的图象之间的关系,在指数型函数中,如果两个函数的底数互为倒数,则这两个函数的图象关于y对称.
解答:由于y=2x
故与其图象关于y轴对称的图象对应的函数的解析式为y=2-x
故选C.
点评:本题考点是指数函数的图象,考查两个底数互为倒数的函数图象的对称性,本题考查函数中的一个结论,适用范围较窄,属于较偏颇的知识点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中:
①函数f(x)=
x-1
x+1
与g(x)=x的图象没有公共点;
②若定义在R上的函数f(x)满足f(x+3)=-f(x),则6为函数f(x)的周期;
③若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>
11
3

④定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函.
则其中正确的是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中:
①函数f(x)=
x-1
x+1
与g(x)=x的图象没有公共点;
②若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期;
③若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>
11
3

④定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函.
则其中正确的个数为
3
3

查看答案和解析>>

科目:高中数学 来源:黑龙江省哈尔滨三中2010届高三9月月考数学文科试题 题型:013

下列说法中:

①函数f(x)=与g(x)=x的图象没有公共点;

②若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期;

③若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则

④定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函.

正确的个数为

[  ]

A.1个

B.2个

C.3个

D.4个

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省三明市尤溪一中高三(上)第一次月考数学试卷(文科)(解析版) 题型:填空题

下列说法中:
①函数与g(x)=x的图象没有公共点;
②若定义在R上的函数f(x)满足f(x+3)=-f(x),则6为函数f(x)的周期;
③若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则
④定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函.
则其中正确的是   

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省盐城市建湖二中高三(上)期末数学试卷(解析版) 题型:填空题

下列说法中:
①函数与g(x)=x的图象没有公共点;
②若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期;
③若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则
④定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函.
则其中正确的个数为   

查看答案和解析>>

同步练习册答案