精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C所对应的边分别为a,b,c,sinC+sin(A﹣B)=3sin2B.若 ,则 =(
A.
B.3
C. 或3
D.3或

【答案】C
【解析】解:∵A+B=π﹣C,∴sinC=sin(π﹣C)=sin(A+B)=sinAcosB+cosAsinB,
又∵sin(A﹣B)=sinAcosB﹣cosAsinB,
∴sinC+sin(A﹣B)=3sin2B,即(sinAcosB+cosAsinB)+(sinAcosB﹣cosAsinB)=6sinBcosB,
化简得2sinAcosB=6sinBcosB,即cosB(sinA﹣3sinB)=0
解之得cosB=0或sinA=3sinB.
① 若cosB=0,结合B为三角形的内角,可得B=
,∴A= =
因此sinA=sin = ,由三角函数的定义得sinA= =
②若sinA=3sinB,由正弦定理得a=3b,所以 =3.
综上所述, 的值为 或3.
故选:C
【考点精析】通过灵活运用两角和与差的正弦公式和二倍角的正弦公式,掌握两角和与差的正弦公式:;二倍角的正弦公式:即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的定义域为集合A,函数g(x)=lg(﹣x2+2x+m)的定义域为集合B.
(1)当m=3时,求A∩(RB)
(2)若A∩B={x|﹣1<x<4},求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本,并称出它们的重量(单位:克),重量值落在内的产品为合格品,否则为不合格品,统计结果如表:

(Ⅰ)求甲流水线样本合格的频率;

(Ⅱ)从乙流水线上重量值落在内的产品中任取2个产品,求这2件产品中恰好只有一件合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别为a、b、c,已知
(1)求sinB的值;
(2)求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,分别是角A,B,C的对边,且.

(1)求角的值;

(2)已知函数,将的图像向左平移个单位长度后得到函数的图像,求的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校高三学生中随机抽取了名学生,统计了期末数学考试成绩如下表:

(1)请在频率分布表中的①、②位置上填上相应的数据,并在给定的坐标系中作出这些数据的频率分布直方图,再根据频率分布直方图估计这名学生的平均成绩;

(2)用分层抽样的方法在分数在内的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取人,求至少有人的分数在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线在直角坐标系中的参数方程为为参数, 为倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,在极坐标系中,曲线的方程为.

(1)写出曲线的直角坐标方程;

(2)点,若直线与曲线交于两点,求使为定值的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 底面 分别是 的中点, 上,且

(1)求证: 平面

(2)在线段上上是否存在点,使二面角

的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为C的圆经过点A(0,2)和B(1,1),且圆心C在直线l:x+y+5=0上.
(1)求圆C的标准方程;
(2)若P(x,y)是圆C上的动点,求3x﹣4y的最大值与最小值.

查看答案和解析>>

同步练习册答案