精英家教网 > 高中数学 > 题目详情
已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为l.
(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;
(Ⅱ)当∠ABC=60°,求菱形ABCD面积的最大值.
解: (Ⅰ)由题意得直线BD的方程为y=x+1.
因为四边形ABCD为菱形,所ACBD.
于是可设直线AC的方程为y=-x+n.

因为AC在椭圆上,
所以△=-12n2+64>0,解得
AC两点坐标分别为(x1,y1,(x2,y2),

所以
所以AC的中点坐标为
由四边形ABCD为菱形可知,点在直线y=x+1上,
所以,解得n=-2.
所以直线AC的方程为,即x+y+2=0.
(Ⅱ)因为四边形ABCD为菱形,且,
所以
所以菱形ABCD的面
由(Ⅰ)可得
所以
所以当n=0时,菱形ABCD的面积取得最大值.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

13分)
已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设直线与椭圆相交于两点,分别过轴作垂线,若垂足恰为椭圆的两个焦点,则等于(    ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.求满足下列条件的椭圆的标准方程.
(1)已知椭圆的长轴是短轴的倍,且过点,并且以坐标轴为对称轴,
(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)
如图,椭圆方程为为椭圆上的动点,为椭圆的两焦点,当点不在轴上时,过的外角平分线的垂线,垂足为,当点轴上时,定义重合。

(Ⅰ)求点的轨迹的方程;
(Ⅱ)已知,试探究是否存在这样的点:点是轨迹内部的整点(平面内横、纵坐标均为整数的点称为整点),且的面积?若存在,求出点的坐标,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的焦点F1,F2,短轴长为8,离心率为,过F1的直线交椭圆于A、B两点,则的周长为(  )
A、10           B、20           C、30          D、40

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求以椭圆的顶点为焦点,焦点为顶点的双曲线方程,并求出其离心率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆C:的左、右焦点分别为F1 ,F2,若椭圆上总存在点P,使得点P在以F1,F2为直径的圆上.
(1) 求椭圆离心率的取值范围;
(2) 若AB是椭圆C的任意一条不垂直x轴的弦,M为弦的中点,且满足
(其中分别表示直线AB、OM的斜率,0为坐标原点),求满足题意的椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为中心在原点焦点在的椭圆的左、右焦点,抛物线为顶点,为焦点,设为椭圆与抛物线的一个交点,如果椭圆的离心率为,且,则的值为(   )
                                

查看答案和解析>>

同步练习册答案