精英家教网 > 高中数学 > 题目详情
选做题B.选修4—2 矩阵与变换

在平面直角坐标系中,设椭圆在矩阵对应的变换作用下得到曲线F,求F的方程.

B.选修4—2 矩阵与变换

本题主要考查曲线在矩阵变换下的变化特点,考查运算求解能力.

解:设是椭圆上任意一点,点在矩阵对应的变换下变为点 则有

,即,所以

  又因为点在椭圆上,故,从而

 所以,曲线的方程是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选做题
A.选修4-2矩阵与变换
已知矩阵A=
.
12
-14
.
,向量
a
=
.
7
4
.

(Ⅰ)求A的特征值λ1、λ2和特征向量α1、α2;   (Ⅱ)计算A6α的值.
B.选修4-4坐标系与参数方程
已知直线l的参数方程为
x=4-2t
y=t-2
(t为参数),P是椭圆
x2
4
+y2=1
上任意一点,求点P到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏二模)选做题
A.选修4-1:几何证明选讲
如图,自⊙O外一点P作⊙O的切线PC和割线PBA,点C为切点,割线PBA交⊙O于A,B两点,点O在AB上.作CD⊥AB,垂足为点D.
求证:
PC
PA
=
BD
DC

B.选修4-2:矩阵与变换
设a,b∈R,若矩阵A=
a0
-1b
把直线l:y=2x-4变换为直线l′:y=x-12,求a,b的值.
C.选修4-4:坐标系与参数方程
求椭圆C:
x2
16
+
y2
9
=1上的点P到直线l:3x+4y+18=0的距离的最小值.
D.选修4-5不等式选讲
已知非负实数x,y,z满足x2+y2+z2+x+2y+3z=
13
4
,求x+y+z的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

选做题
A.选修4-2矩阵与变换
已知矩阵A=
.
12
-14
.
,向量
a
=
.
7
4
.

(Ⅰ)求A的特征值λ1、λ2和特征向量α1、α2;   (Ⅱ)计算A6α的值.
B.选修4-4坐标系与参数方程
已知直线l的参数方程为
x=4-2t
y=t-2
(t为参数),P是椭圆
x2
4
+y2=1
上任意一点,求点P到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省徐州市沛县湖西中学高三(上)期末数学模拟试卷(解析版) 题型:解答题

选做题
A.选修4-2矩阵与变换
已知矩阵,向量=
(Ⅰ)求A的特征值λ1、λ2和特征向量α1、α2;   (Ⅱ)计算A6α的值.
B.选修4-4坐标系与参数方程
已知直线l的参数方程为(t为参数),P是椭圆上任意一点,求点P到直线l的距离的最大值.

查看答案和解析>>

同步练习册答案