【题目】2016年双十一期间,某电子产品销售商促销某种电子产品,该产品的成本为2元/件,通过市场分析,双十一期间该电子产品销售量y(单位:千件)与销售价格x(单位:元)之间满足关系式:y= +2x2﹣35x+170(其中2<x<8,a为常数),且已知当销售价格为3元/件时,该电子产品销售量为89千件. (Ⅰ)求实数a的值及双十一期间销售该电子产品获得的总利润L(x);
(Ⅱ)销售价格x为多少时,所获得的总利润L(x)最大?并求出总利润L(x)的最大值.
【答案】解:(Ⅰ)因为x=3时,y=89,y= +2x2﹣35x+170(其中2<x<8,a为常数),所以a+83=89,故a=6; ∴该商品每日的销售量y= +2x2﹣35x+170,
∴商场每日销售该商品所获得的利润为L(x)=(x﹣2)( +2x2﹣35x+170)
(Ⅱ)L(x)=6+(x﹣2)(2x2﹣35x+170),2<x<8.
从而,L′(x)=6(x﹣5)(x﹣8),
于是,当x变化时,f(x)、f′(x)的变化情况如下表:
x | (2,5) | 5 | (5,8) |
f'(x) | + | 0 | ﹣ |
f(x) | 单调递增 | 极大值141 | 单调递减 |
由上表可得,x=5是函数f(x)在区间(2,8)内的极大值点,也是最大值点.
所以,当x=5时,函数f(x)取得最大值,且最大值等于141.
答:当销售价格为5元/千克时,商场每日销售该商品所获得的利润最大
【解析】(Ⅰ)由x=3时,y=89,代入函数的解析式,解关于a的方程,可得a值;商场每日销售该商品所获得的利润=每日的销售量×销售该商品的单利润,可得日销售量的利润函数为关于x的三次多项式函数;(Ⅱ)用求导数的方法讨论函数的单调性,得出函数的极大值点,从而得出最大值对应的x值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣ax+ln(x+1)(a∈R).
(1)当a=2时,求函数f(x)的极值点;
(2)若函数f(x)在区间(0,1)上恒有f′(x)>x,求实数a的取值范围;
(3)已知c1>0,且cn+1=f′(cn)(n=1,2,…),在(2)的条件下,证明数列{cn}是单调递增数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)经过点( ,1),过点A(0,1)的动直线l与椭圆C交于M、N两点,当直线l过椭圆C的左焦点时,直线l的斜率为 .
(1)求椭圆C的方程;
(2)是否存在与点A不同的定点B,使得∠ABM=∠ABN恒成立?若存在,求出点B的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前 n 项和为 Sn , a1=1,且 an+1=2Sn+1,n∈N .
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令 c=log3a2n , bn= ,记数列{bn}的前 n 项和为Tn , 若对任意 n∈N , λ<Tn 恒成立,求实数 λ 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C: =1(a>0,b>0)的左、右焦点分别为F1 , F2 , O为坐标原点,P是双曲线在第一象限上的点且满足|PF1|=2|PF2|,直线PF2交双曲线C于另一点N,又点M满足 = 且∠MF2N=120°,则双曲线C的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC= AD=1,CD= .
(1)求证:平面MQB⊥平面PAD;
(2)若二面角M﹣BQ﹣C大小的为60°,求QM的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a、b、c是角A、B、C的对边,则下列结论正确的序号是 . ①若a、b、c成等差数列,则B= ; ②若c=4,b=2 ,B= ,则△ABC有两解;
③若B= ,b=1,ac=2 ,则a+c=2+ ; ④若(2c﹣b)cosA=acosB,则A= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB= .D,E分别为线段AB,BC上的点,且CD=DE= ,CE=2EB=2.
(Ⅰ)证明:DE⊥平面PCD
(Ⅱ)求二面角A﹣PD﹣C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com