【题目】已知直线l1的方程为3x+4y﹣12=0.
(1)若直线l2与l1平行,且过点(﹣1,3),求直线l2的方程;
(2)若直线l2与l1垂直,且l2与两坐标轴围成的三角形面积为4,求直线l2的方程.
【答案】(1);(2)或
【解析】分析:(1)根据平行直线的斜率相等,先求出斜率,点斜式求得直线方程;(2)根据垂直关系求出直线的斜率,得到它在坐标轴上的截距,根据与两坐标轴围成的三角形面积为4出截距,即得直线方程.
详解:(1)由直线l2与l1平行,可设l2的方程为3x+4y+m=0,以x=﹣1,y=3代入,得﹣3+12+m=0,即得m=﹣9,
∴直线l2的方程为3x+4y﹣9=0.
(2)由直线l2与l1垂直,可设l2的方程为4x﹣3y+n=0,
令y=0,得x=﹣,令x=0,得y=,
故三角形面积S=|﹣|||=4
∴得n2=96,即n=±4
∴直线l2的方程是4x﹣3y+4=0或4x﹣3y﹣4=0.
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且(c﹣2a) =c
(1)求B的大小;
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若对任意的x∈R,都有f(x)≤f(B),求函数f(x)的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知动直线过点,且与圆交于、两点.
(1)若直线的斜率为,求的面积;
(2)若直线的斜率为,点是圆上任意一点,求的取值范围;
(3)是否存在一个定点(不同于点),对于任意不与轴重合的直线,都有平分,若存在,求出定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合,.记为同时满足下列条件的集合的个数:
①;②若,则;③若,则.
则()___________;
()的解析式(用表示)___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集为[﹣5,﹣1],求实数a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=asinxcos2x+1(a,b∈R).
(1)当a=1,且 时,求f(x)的值域;
(2)若存在实数 使得成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我校高一年级研究性学习小组共有9名学生,其中有3名男生和6名女生.在研究性学习过程中,要进行两次汇报活动(即开题汇报和结题汇报),每次汇报都从这9名学生中随机选1 人作为代表发言.设每人每次被选中与否均互不影响.
(1)求两次汇报活动都由小组成员甲发言的概率;
(2)设为男生发言次数与女生发言次数之差的绝对值,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,点在抛物线上,且。
(Ⅰ)求抛物线的标准方程及实数的值;
(Ⅱ)直线过抛物线的焦点,且与抛物线交于两点,若(为坐标原点)的面积为,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com