精英家教网 > 高中数学 > 题目详情
已知点A(5
3
,5),过点A的直线l:x=my+n(n>0),若可行域
x≤my+n
x-
3
y≥
y≥0
0
的外接圆的直径为20,则实数n=
 
分析:先画可行域得△OAB,再利用正弦定理a=2RsinA即可求之.
解答:精英家教网解:由题意知可行域为图中△OAB及其内部,
解得B(n,0),|AB|=
(n-5
3
)
2
+25

又tan∠AOB=
3
3
,则∠AOB=30°,
由正弦定理得|AB|=2Rsin∠AOB=20×sin30°=10,
解得n=10
3

故答案为10
3
点评:本题主要考查线性规划和正弦定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网与向量、圆交汇.例5:已知F1、F2分别为椭圆C1
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
5
3

(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:
AP
=-λ
PB
AQ
QB
,(λ≠0且λ≠±1).问点Q是否总在某一定直线上?若在,求出这条直线,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1
满足条件:(1)焦点为F1(-5,0),F2(5,0);(2)离心率为
5
3
,求得双曲线C的方程为f(x,y)=0.若去掉条件(2),另加一个条件求得双曲线C的方程仍为f(x,y)=0,则下列四个条件中,符合添加的条件可以是(  )
①双曲线C:
x2
a2
-
y2
b2
=1
上的任意点P都满足||PF1|-|PF2||=6;
②双曲线C:
x2
a2
-
y2
b2
=1
的渐近线方程为4x±3y=0;
③双曲线C:
x2
a2
-
y2
b2
=1
的焦距为10;
④双曲线C:
x2
a2
-
y2
b2
=1
的焦点到渐近线的距离为4.
A、①③B、②③C、①④D、①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3ax2+3x+1.
(1)设a=
53
,求函数f(x)在[0,5]上的最大值和最小值;
(2)设f(x)在区间(2,3)中至少有一个极值点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|AB|=4,O是线段AB的中点,点P在A、B所在的平面内运动且保持|PA|+|PB|=6,则|PO|的最大值和最小值分别是
3,
5
3,
5

查看答案和解析>>

同步练习册答案