精英家教网 > 高中数学 > 题目详情
已知α,β∈(0,
π
2
),且sin(α+2β)=
7
5
sinα.
(1)求证:tan(α+β)=6tanβ;
(2)若tanα=3tanβ,求α的值.
分析:(1)依题意知,sin[(α+β)+β]=
7
5
sin[(α+β)-β],整理得sin(α+β)cosβ=6cos(α+β)sinβ,易证cos(α+β)≠0,继而可证tan(α+β)=6tanβ;
(2)由(1)得tan(α+β)=6tanβ,即
tanα+tanβ
1-tanαtanβ
=6tanβ,整理得tanβ=
1
3
tanα,代入前者即可求得tanα及α的值.
解答:(1)证明:∵sin(α+2β)=
7
5
sinα,
∴sin[(α+β)+β]=
7
5
sin[(α+β)-β],
∴sin(α+β)cosβ+cos(α+β)sinβ=
7
5
[sin(α+β)cosβ-cos(α+β)sinβ],
∴sin(α+β)cosβ=6cos(α+β)sinβ①
∵α,β∈(0,
π
2
),
∴α+β∈(0,π),
若cos(α+β)=0,则由①知sin(α+β)=0与α+β∈(0,π)矛盾,
∴cos(α+β)≠0,
∴①两边同除以6cos(α+β)cosβ得:tan(α+β)=6tanβ;  
(2)由(1)得tan(α+β)=6tanβ,即
tanα+tanβ
1-tanαtanβ
=6tanβ,
∴tanα=3tanβ,
∴tanβ=
1
3
tanα,
4
3
tanα
1-
1
3
tan
2
α
2tanα,
∵α∈(0,
π
2
),
∴tanα=1,
∴α=
π
4
点评:本题考查两角和与差的正弦函数,考查“拆分角”的应用,突出两角和与差的正切公式的考查及推理证明能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线ax+by+c=0被曲线M:
x=2cosθ
y=2sinθ
所截得的弦AB的长为2,O为原点,那么
OA
OB
的值等于
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知B(-3,0),C(3,0),D为线段BC上一点,
AD
BC
=0
,H是△ABC的垂心,且
AH
=3
HD

(Ⅰ)求点H的轨迹M的方程;
(Ⅱ)若过C点且斜率为-
1
2
的直线与轨迹M交于点P,点Q(t,0)是x轴上任意一点,求当△CPQ为锐角三角形时t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面上,已知A(-5,0)、B(3,0),点C在直线y=x+1上,若∠ACB>90°,则点C的横坐标的取值范围是
(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a<b<0,那么下列不等式中一定成立的是   (  )

查看答案和解析>>

同步练习册答案