精英家教网 > 高中数学 > 题目详情
2.在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2cosA-1)sinB+2cosA=1.
(1)求A的大小;
(2)若5b2=a2+2c2,求$\frac{sinB}{sinC}$的值.

分析 (1)化简已知的式子,结合角的范围求出cosA的值,由特殊角的余弦值求出角A;
(2)由(1)和余弦定理列出方程,把条件代入化简后转化为关于$\frac{b}{c}$的二次方程,求出$\frac{b}{c}$的值,根据正弦定理即可求出$\frac{sinB}{sinC}$的值.

解答 解:(1)∵(2cosA-1)sinB+2cosA=1,
∴(2cosA-1)(sinB+1)=0,
∵0<B<π,∴sinB>0,则$cosA=\frac{1}{2}$,
∵0<A<π,∴$A=\frac{π}{3}$;
(2)在△ABC中,由余弦定理得:a2=b2+c2-2bccosA=b2+c2-bc,
∵5b2=a2+2c2,∴5b2=b2+c2-bc+2c2
化简得4b2+bc-3c2=0,
∴$4{(\frac{b}{c})^2}+\frac{b}{c}-3=0$,∴$(\frac{b}{c}+1)(4•\frac{b}{c}-3)=0$,
解得$\frac{b}{c}=-1(舍),或\frac{b}{c}=\frac{3}{4}$,
由正弦定理得,$\frac{sinB}{sinC}=\frac{b}{c}=\frac{3}{4}$.

点评 本题考查正弦、余弦定理的综合应用,以及化简、变形能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知等差数列{an}的前n项和为Sn,a5=6,S7=35,则数列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的前100项和为$\frac{50}{51}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列四组函数中,表示相等函数的是(  )
A.f(x)=$\sqrt{x}$,g(x)=($\sqrt{x}$)2
B.f(x)=2lgx,g(x)=lgx2
C.f(x)=$\sqrt{x-1}$$\sqrt{x+1}$,g(x)=$\sqrt{{x}^{2}-1}$
D.f(x)=$\left\{\begin{array}{l}{1,x≤1}\\{2,1<x<2}\\{3,x≥2}\end{array}\right.$,
xx≤11<x<2x≥2
g (x)123

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是4x+3y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17. 设椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右顶点分别为A、B,点P在椭圆上,且异于A、B两点,O为坐标原点
(1)若直线AP与BP的斜率之积为-$\frac{3}{4}$,求椭圆的离心率.
(2)若椭圆的一个焦点为F(2,0),在(1)的条件下,椭圆上存在两点P、Q,满足$\overrightarrow{MP}$⊥$\overrightarrow{MQ}$,其中M(3,0)试求$\overrightarrow{PM}•\overrightarrow{PQ}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知命题p:关于x的函数y=x2-3ax+4在[1,+∞)上是增函数,命题q:函数y=(2a-1)x为减函数,若“p且q”为真命题,则实数a的取值范围是(  )
A.(-∞,$\frac{2}{3}$]B.(0,$\frac{1}{2}$)C.($\frac{1}{2}$,$\frac{2}{3}$]D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)=ax,g(x)=loga|x|(a>0,且a≠1),若f(2014)•g(-2014)<0,则y=f(x)与y=g(x)在同一坐标系内的大致图形是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$=(2,1),求与$\overrightarrow{a}$垂直的单位向量.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的前n项是3+2-1,6+4-1,9+8一1,12+16-1,…,则数列{an}的通项公式an=3×2n-1+2n-1,其前n项和Sn=5×2n-5-n.

查看答案和解析>>

同步练习册答案