精英家教网 > 高中数学 > 题目详情
20.已知命题p:方程x2+my2=2表示焦点在y轴上的椭圆,命题q:不等式4x2+4(m-2)x+1>0在x∈R上恒成立,又p∨q为真,?q为真,求实数m的取值范围.

分析 先求出命题为真命题的等价条件,然后根据复合命题真假之间的关系建立条件关系即可.

解答 解:∵p∨q为真,?q为真,
∴q为假命题,p是真命题,
若方程x2+my2=2表示焦点在y轴上的椭圆,
则等价为方程$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{\frac{2}{m}}$=1表示焦点在y轴上的椭圆,
即$\frac{2}{m}$>2,解得0<m<1,即p:0<m<1,
不等式4x2+4(m-2)x+1>0在x∈R上恒成立,
则判别式△=16(m-2)2-16<0,
即(m-2)2<1,解得1<m<3,即q:1<m<3,¬q:m≥3或m≤1,
则$\left\{\begin{array}{l}{0<m<1}\\{m≥3或m≤1}\end{array}\right.$,解得0<m<1,
即实数m的取值范围是(0,1).

点评 本题主要考查复合命题的真假关系的判断和应用,根据条件求出命题的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)的定义域是R,且满足下列三个条件
①对于任意的a,b∈R,都有f(a+b)=f(a)+f(b);
②f(1)=-2;
③当x>0时,f(x)<0.
(1)判断f(x)的奇偶性与单调性;
(2)求函数f(x)在[-3,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某校安排小李等5位实习教师到一、二、三班实习,若要求每班至少安排一人且小李到一班,则不同的安排方案种数为50.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥与外接球的体积比为(  )
A.$\frac{2\sqrt{3}}{9π}$B.$\frac{\sqrt{3}}{9π}$C.$\frac{\sqrt{2}}{16π}$D.$\frac{8\sqrt{2}}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=5sin($\frac{x}{3}$-$\frac{π}{10}$)(x∈R)的最大值和最小正周期分别是(  )
A.5,2πB.1,6πC.1,2πD.5,6π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.直线x-4y+12=0在x轴和y轴的截距分别是(  )
A.12,3B.-12,-3C.12,-3D.-12,3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{a}$=(3,-2),$\overrightarrow{b}$=(2,1).
(1)|2$\overrightarrow{a}$-$\overrightarrow{b}$|;
(2)($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+2$\overrightarrow{b}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.直线ax+y+1=0与连接A(3,2),B(-3,2)两点的线段相交,则a的取值范围a≤-1或a≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知圆C的圆心在直线y=2x上,并且过点A(0,1)和B(0,3).
(1)求圆C的方程.
(2)若点P是圆C上的动点,坐标原点为O,求直线OP的斜率的取值范围.

查看答案和解析>>

同步练习册答案