精英家教网 > 高中数学 > 题目详情

若点(3,1)是抛物线y2=2px(p>0)的一条弦的中点,且这条弦所在直线的斜率为2,则p=________.

2
分析:求出直线方程,代入抛物线方程,利用(3,1)是中点,即可求得结论.
解答:过点(3,1)且斜率为2的直线方程为y=2x-5
代入抛物线y2=2px,可得(2x-5)2=2px,即4x2-(20+2p)x+25=0

∴p=2
故答案为:2
点评:本题考查直线与抛物线的位置关系,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•普陀区一模)设点F是抛物L:y2=2px(p>0)的焦点,P1,P2,…,Pn是抛物线L上的n个不同的点n(n≥3,n∈N*).
(1)当p=2时,试写出抛物线L上三点P1、P2、P3的坐标,时期满足|
FP1
|+|
FP2
|+|
FP3
|=6

(2)当n≥3时,若
FP1
+
FP2
+…+
FPn
=
0
,求证:|
FP1
|+|
FP2
|+…+|
FPn
|=np

(3)当n>3时,某同学对(2)的逆命题,即:“若|
FP1
|+| 
FP2
|+…+|  
FPN
|=np
,则
FP1
+
FP2
+…+
FPN
=
0
”开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
1.试构造一个说明该命题确实是假命题的反例;
2.对任意给定的大于3的正整数n,试构造该假命题反例的一般形式,并说明你的理由:
3.如果补充一个条件后能使该命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

AnBn分别表示数列{an}和{bn}的前n项和,对任何正整数nan=-,4Bn-12An=13n.

(1)求数列{bn}的通项公式;

(2)设有抛物线列C1C2,…,Cn,…,抛物线Cn(nN*)的对称轴平行于y轴,顶点为(an,bn),且通过点Dn(0,n2+1),过点Dn且与抛物线Cn相切的直线的斜率为kn,求极限.

(3)设集合X={x|x=2an,nN*},Y={y|y=4bn,nN*},若等差数列{Cn}的任一项Cn∈X∩Y,C1是X∩Y中的最大数,且-265<C10<-125,求{Cn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设点F是抛物L:y2=2px(p>0)的焦点,P1,P2,…,Pn是抛物线L上的n个不同的点n(n≥3,n∈N*).
(1)当p=2时,试写出抛物线L上三点P1、P2、P3的坐标,时期满足数学公式
(2)当n≥3时,若数学公式,求证:数学公式
(3)当n>3时,某同学对(2)的逆命题,即:“若数学公式,则数学公式”开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
1.试构造一个说明该命题确实是假命题的反例;
2.对任意给定的大于3的正整数n,试构造该假命题反例的一般形式,并说明你的理由:
3.如果补充一个条件后能使该命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若An和Bn分别表示数列{an}和{bn}的前n项和,对任意正整数nan =-,4Bn-12An=13n.

 

(1)求数列{bn}的通项公式;

 

(2)设有抛物线列c1c2、…cn、…,抛物线cn(n∈N)的对称轴平行于y轴,顶点为(an,bn),且通过点Dn(0,n2+1),过点Dn且与抛物线cn相切的直线斜率为kn,求极限

 

(3)设集合X={x|x=2an,n∈N},Y={y|y=4bn,n∈N}.若等差数列{cn}的任一项cn∈X∩Y,

c1是X∩Y中的最大数,且-265<c10<-125,求{cn}的通项公式.

查看答案和解析>>

科目:高中数学 来源:2012年上海市普陀区高考数学一模试卷(理科)(解析版) 题型:解答题

设点F是抛物L:y2=2px(p>0)的焦点,P1,P2,…,Pn是抛物线L上的n个不同的点n(n≥3,n∈N*).
(1)当p=2时,试写出抛物线L上三点P1、P2、P3的坐标,时期满足
(2)当n≥3时,若,求证:
(3)当n>3时,某同学对(2)的逆命题,即:“若,则”开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
1.试构造一个说明该命题确实是假命题的反例;
2.对任意给定的大于3的正整数n,试构造该假命题反例的一般形式,并说明你的理由:
3.如果补充一个条件后能使该命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由.

查看答案和解析>>

同步练习册答案