精英家教网 > 高中数学 > 题目详情

已知半径为1的定圆⊙P的圆心P到定直线的距离为2,Q是上一动点,⊙Q与⊙P相外切,⊙Q交于M、N两点,对于任意直径MN,平面上恒有一定点A,使得∠MAN为定值。求∠MAN的度数。

60°


解析:

为x轴,点P到的垂线为y轴建立如图所示的直角坐标系,设Q的坐标为(x, 0),点A(k, λ),⊙Q的半径为r,则:M(x-r, 0), N(x+r, 0), P(2, 0), PQ==1+r。所以x=±, ∴tan∠MAN=

,令2m=h2+k2-3,tan∠MAN=,所以m+rk=nhr,∴m+(1-nh)r=,两边平方,得:m2+2m(1-nh)r-(1-nh)2r2=k2r2+2k2r-3k2,因为对于任意实数r≥1,上式恒成立,所以,由(1)(2)式,得m=0, k=0,由(3)式,得n=。由2m=h2+k2-3得h=±,所以tan∠MAN==h=±。所以∠MAN=60°或120°(舍)(当Q(0, 0), r=1时∠MAN=60°),故∠MAN=60°。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、已知半径为1的动圆与定圆(x-5)2+(y+7)2=16相切,则动圆圆心的轨迹方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知半径为1的动圆与定圆(x-5)2+(y+6)2=9相切,则动圆圆心的轨迹方程是(  )

查看答案和解析>>

科目:高中数学 来源:2014届广东省高一下学期第一次阶段考试理科数学 题型:选择题

已知半径为1的动圆与定圆相切,则动圆圆心的轨迹方程是(   )

A.

B.  或

C.

D. 或

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年海南省澄迈中学高二(上)期中数学试卷(文科)(解析版) 题型:选择题

已知半径为1的动圆与定圆(x-5)2+(y+7)2=16相切,则动圆圆心的轨迹方程是( )
A.(x-5)2+(y+7)2=25
B.(x-5)2+(y+7)2=3或(x-5)2+(y+7)2=15
C.(x-5)2+(y+7)2=9
D.(x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9

查看答案和解析>>

同步练习册答案