精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,在四棱锥P-ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD,底面ABCD为直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2,OAD中点.
(Ⅰ)求证:PO⊥平面ABCD
(Ⅱ)求异面直线PBCD所成角的大小;
(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由.




在Rt△POA中,因为APAO=1,所以OP=1,
在Rt△PBO中,tan∠PBO
所以异面直线PBCD所成的角是.
(Ⅲ)假设存在点Q,使得它到平面PCD的距离为.
QDx,则,由(Ⅱ)得CD=OB=
在Rt△POC中,
所以PC=CD=DP,
Vp-DQC=VQ-PCD,2,所以存在点Q满足题意,此时.
解法二:(Ⅰ)同解法一.
(Ⅱ)以O为坐标原点,的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系O-xyz,依题意,易得
A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),P(0,0,1),
所以
所以异面直线PBCD所成的角是arccos
(Ⅲ)假设存在点Q,使得它到平面PCD的距离为
由(Ⅱ)知
设平面PCD的法向量为n=(x0,y0,z0).
所以
x0=1,得平面PCD的一个法向量为n=(1,1,1).
,得y=-y=(舍去),
此时,所以存在点Q满足题意,此时.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,DC⊥平面ABCEBDCACBCEB=2DC=2,∠ACB=120°,PQ分别为AEAB的中点.

(1)证明:PQ∥平面ACD
(2)求AD与平面ABE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA  ⊥平面ABCD,AP=AB=2,BC=,E,F分别是AD,PC的中点.

(Ⅰ)证明:PC  ⊥平面BEF;
(Ⅱ)求平面BEF与平面BAP夹角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,在四棱锥中,底面为直角梯形,且,侧面底面. 若.

(Ⅰ)求证:平面
(Ⅱ)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 
如图,五面体中,.底面是正三角形,.四边形是矩形,二面角为直二面角.

(Ⅰ)上运动,当在何处时,有∥平面,  
并且说明理由;
(Ⅱ)当∥平面时,求二面角余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知六棱锥的底面是正六边形,平面.则下列结论不正确的是
A.平面B.平面
C.平面D.平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(理科)有共同底边的等边三角形所在平面互相垂直,则异面直线所成角的余弦值为                            (  )
A         B         C          D

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

mn是两条不同的直线,是三个不同的平面,给出下列四个命题:
①若,则    ②若,则
③若,则   ④若,则
其中正确命题的序号是            

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平行六面体中,,则的长为                           (   )
A. B. C. D.

查看答案和解析>>

同步练习册答案