分析 y=$\frac{1}{4}$x2+b,与y=b+1联立可得G(2,b+1),利用导数的几何意义可得切线的斜率,进而点到过点G的切线方程为y=x+b-1,把(0,0)代入可得b=1即可点到椭圆的方程.
解答 解:y=$\frac{1}{4}$x2+b,当y=b+1,得x=±2,∴G(2,b+1),
由y′=$\frac{1}{2}$x,
∴y′|x=2=1,
∴过点G的切线方程为y-(b+1)=x-2,即y=x+b-1,
把(0,0)代入可得b=1.
即椭圆的方程为$\frac{{x}^{2}}{4}+{y}^{2}$=1.
点评 本题考查了椭圆的标准方程及其性质、利用导数研究切线方程,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$ | B. | $\overrightarrow{b}$+$\overrightarrow{a}$-$\overrightarrow{c}$ | C. | $\overrightarrow{a}$-$\overrightarrow{b}$+$\overrightarrow{c}$ | D. | $\overrightarrow{b}$-$\overrightarrow{a}$+$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-2,1] | B. | [$\frac{5}{2}$,4] | C. | [1,$\frac{7}{4}$] | D. | [$\frac{7}{4}$,$\frac{5}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com