精英家教网 > 高中数学 > 题目详情

【题目】已知定义域为的函数是奇函数,为指数函数且的图象过点.

1)求实数n的值并写出的表达式;

2)若对任意的,不等式恒成立,求实数t的范围;

3)若方程恰有4个互异的实数根,求实数a的范围.

【答案】123

【解析】

1)首先求得指数函数的解析式,再根据定义在上的奇函数,得到,由此求得的值并求得的表达式.

2)根据的单调性和奇偶性化简不等式,得到,构造函数,结合一次函数的性质列不等式组,解不等式组求得的取值范围.

3)根据函数为奇函数化简,根据是单调函数得到,利用换元法,构造函数,结合图像求得的取值范围.

1)由题意可设个,又过点

所以,又为奇函数,∴

所以

2)由上单调递减,

为奇函数,由

所以,即

,由题意

3)由于为奇函数,所以由,又上递减,

显然,∴,则

方程有4个互异实数根,画出的图象如下图所示,由图可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】开发商现有四栋楼ABCDD位于BC间,到楼ABC的距离分别为,且从楼D看楼AB的视角为.如图所示,不计楼大小和高度.

1)试求从楼A看楼BC视角大小;

2)开发商为谋求更大开发区域,拟再建三栋楼MPN,形成以楼AMPN为顶点的矩形开发区域,规划要求楼BC分别位于楼MP和楼PN间,如图所示,记,当等于多少时,矩形开发区域面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要建造一段长的高速公路,工程队需要把380名施工人员分为两组,一组负责的软土地带的施工,另一组完成剩下的硬土地带的施工.根据工程技术人员的测算,软、硬地带每米公路的工程量分别为50·天和30·.

1)设参与软土地带工作的人数为人,试分别写出在软、硬地带筑路的时间关于的函数表达式;

2)问如何安排两组的人数,才能使全队筑路工期最短?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】风景秀美的宝湖畔有四棵高大的银杏树,记作A,B,P,Q,湖岸部分地方围有铁丝网不能靠近.欲测量P,Q两棵树和A,P两棵树之间的距离,现可测得A,B两点间的距离为100 m,∠PAB=75°,∠QAB=45°,∠PBA=60°,∠QBA=90°,如图所示.则P,Q两棵树和A,P两棵树之间的距离各为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

Ⅰ)若的一个极值点,求函数表达式, 并求出的单调区间;

Ⅱ)若,证明当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在直线上.求:

(1) AD边所在直线的方程;

(2) DC边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的等腰梯形ABCD中,ECD中点.若沿AE将三角形DAE折起,并连接DBDC,得到如图所示的几何体D-ABCE,在图中解答以下问题:

1)设GAD中点,求证:平面GBE

2)若平面平面ABCE,且FAB中点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:

(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;

(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

箱产量<50 kg

箱产量≥50 kg

旧养殖法

新养殖法

(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体ABCD中,都是边长为8的正三角形,点O是线段BC的中点.

1)证明:.

2)若为锐角,且四面体ABCD的体积为求侧面ACD的面积.

查看答案和解析>>

同步练习册答案