精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两人射击,甲射击一次中靶的概率是,乙射击一次中靶的概率是,且是方程的两个实根,已知甲射击5次,中靶次数的方差是.

1)求的值;

2)若两人各射击2次,至少中靶3次就算完成目标,则完成目标概率是多少?

【答案】1;(2

【解析】

1)可以判断甲射击中靶的次数服从,利用二项分布的方差公式可以求出,再利用一元二次方程根与系数关系进行求解即可;

2))设甲乙两人两次射击中分别中靶次数为事件 两人且中靶成功的概率为P,根据独立事件的概率公式进行求解即可.

1)由题意甲射击中靶的次数服从,所以由

.又因为是方程的两个实根,由根与系数关系可知:

,所以

2)设甲、乙两人两次射击中分别中靶次数为事件(其中表示中靶的次数), “两人各射击2次,至少中靶3次”的概率为P

因为是相互独立事件,

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是菱形,底面分别是的中点,.

I)证明:

II)求直线与平面所成角的正弦值;

III)在边上是否存在点,使所成角的余弦值为,若存在,确定点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)若上恒成立,求实数的取值范围;

(Ⅲ)若数列的前项和 ,求证:数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正整数的数列{an}的前n项和为Sn,满足:Sn﹣1+kan=tan2﹣1,n≥2,n∈N*(其中k,t为常数).

(1)若k=,t=,数列{an}是等差数列,求a1的值;

(2)若数列{an}是等比数列,求证:k<t.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,底面是边长为的正三角形,,且分别是中点,则异面直线所成角的余弦值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列的前项和为,且,数列满足,且

I)求数列的通项公式;

II)令,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三边AB,BC,AC的长依次成等差数列,且|AB|>|AC|,B(-1,0),C(1,0),则顶点A的轨迹方程为(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,判断函数的单调性;

2)若恒成立,求的取值范围;

3)已知,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线和抛物线相交于不同两点AB.

I)求实数的取值范围;

)设AB的中点为M,抛物线C的焦点为F.以MF为直径的圆与直线l相交于另一点N,且满足,求直线l的方程.

查看答案和解析>>

同步练习册答案