【题目】一装有水的直三棱柱ABC-A1B1C1容器(厚度忽略不计),上下底面均为边长为5的正三角形,侧棱为10,侧面AA1B1B水平放置,如图所示,点D、E、F、G分别在棱CA、CB、C1B1、C1A1上,水面恰好过点D,E,F,C,且CD=2
(1)证明:DE∥AB;
(Ⅱ)若底面ABC水平放置时,求水面的高
科目:高中数学 来源: 题型:
【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,且,设命题p:函数在上单调递减;命题q:函数 在上为增函数,
(1)若“p且q”为真,求实数c的取值范围
(2)若“p且q”为假,“p或q”为真,求实数c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 如图,在四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD= ,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.
(1) 求直线PB与平面POC所成角的余弦值;
(2)线段上是否存在一点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,椭圆: 的左焦点是,离心率为,且上任意一点到的最短距离为.
(1)求的方程;
(2)过点的直线(不过原点)与交于两点、, 为线段的中点.
(i)证明:直线与的斜率乘积为定值;
(ii)求面积的最大值及此时的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:对任意,不等式恒成立;命题q:存在,使得成立.
(1)若p为真命题,求m的取值范围;
(2)当,若p且q为假,p或q为真,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆、抛物线的焦点均在轴上, 的中心和的顶点均为原点,平面上四个点, , , 中有两个点在椭圆上,另外两个点在抛物线上.
(1)求的标准方程;
(2)是否存在直线满足以下条件:①过的焦点;②与交于两点,且以为直径的圆经过原点.若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com