(本小题满分14分)
设函数,函数g(x)=分别在x=m和x=n处取得极值,且
m<n
(1)求的值
(2)求证:f(x)在区间[m,n]上是增函数
(3)设f(x)在区间[m,n]上的最大值和最小值分别为M和N,试问当实数a为何值时,M-N取得最小值?并求出这个最小值
解:(1)
(2)f(x)在区间[m,n]上为增函数 ;
(3)a=0,f(n)=1a=0 。
【解析】本试题主要是考查了导数在研究函数中的运用求解函数的极值和函数的最值,以及函数的单调性问题的综合运用。
(1)因为为的两根为m,n
所以由韦达定理得 m+n=-a,mn=-1,从而解得。
(2)运用导数的工具性作用,判定函数在给定区间的导数是否恒大于等于零得到。
(3)根据由(2)可知M=f(n),N=f(m)
必有f(m)+f(n)=0,得到2mn(m+n)+2a=0 所以a=0。
解:(1)因为的两根为m,n
所以由韦达定理得 m+n=-a,mn=-1 ……(1分)
因为m≤x≤n,所以
因此f(x)在区间[m,n]上为增函数 ……(8分)
(3)由(2)可知M=f(n),N=f(m)
……(10分)
必有f(m)+f(n)=0
又f(m)+f(n)=
整理可得 2mn(m+n)+2a=0 所以a=0
又可验证此时f(n)=1a=0 ……(14分)
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com