精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,设点是椭圆 上一点,从原点向圆 作两条切线分别与椭圆交于点 ,直线 的斜率分别记为 . 

(1)求证: 为定值;

(2)求四边形面积的最大值.

【答案】(1)证明见解析;(2)1.

【解析】试题分析:(1)因为直线 ,与圆相切,推出 是方程的两个不相等的实数根,利用韦达定理得,结合点点在椭圆上,得出;(2)当直线 不落在坐标轴上时,设 ,通过,推出,结合 在椭圆上,可得,再讨论直线落在坐标轴上时,显然有然后表示出,结合基本不等式即可求出四边形面积的最大值.

试题解析:1因为直线 ,与圆相切,

,可得 是方程的两个不相等的实数根

,因为点在椭圆上,所以

.

2)(i)当直线 不落在坐标轴上时,设

因为,所以,即

因为 在椭圆上,

所以

整理得,所以

所以.

ii)当直线落在坐标轴上时,显然有

综上: . 

因为

因为

所以的最大值为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,抛物线在第一象限内的点到焦点的距离为,曲线在点处的切线交轴于点,直线经过点且垂直于轴.

(Ⅰ)求线段的长;

(Ⅱ)设不经过点的动直线交曲线于点,交于点,若直线的斜率依次成等差数列,试问:是否过定点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

I)求曲线在点处的切线方程.

II)求证:当时,

III)设实数使得恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,其中实数满足,若的最大值为,则 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

)当为自然对数的底数)时,求的极小值;

Ⅱ)若函数存在唯一零点,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 的中点.

)求证: 平面

)求二面角的余弦值.

)在线段上是否存在点,使得,若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在陶瓷史上留下了浓墨重彩的一笔.唐三彩的生产至今已有1300多年的历史,制作工艺十分复杂,它的制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立。某陶瓷厂准备仿制甲、乙、丙三件不同的唐三彩工艺品,根据该厂全面治污后的技术水平,经过第一次烧制后,甲、乙、丙三件工艺品合格的概率依次为 ,经过第二次烧制后,甲、乙、丙三件工艺品合格的概率依次为 .

(1)求第一次烧制后甲、乙、丙三件中恰有一件工艺品合格的概率;

(2)经过前后两次烧制后,甲、乙、丙三件工艺品成为合格工艺品的件数为,求随机变量的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本题满分14分如图,已知椭圆,其左右焦点为,过点的直线交椭圆两点,线段的中点为的中垂线与轴和轴分别交于两点,且构成等差数列.

1求椭圆的方程;

2的面积为为原点的面积为.试问:是否存在直线,使得?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中装有除颜色外其余均相同的12个小球,从中随机取出1个球,取出红球的概率为,取出黑球的概率为,取出白球的概率为,取出绿球的概率为.求:

(1)取出的1个球是红球或黑球的概率;

(2)取出的1个球是红球或黑球或白球的概率.

查看答案和解析>>

同步练习册答案