精英家教网 > 高中数学 > 题目详情

【题目】设函数.

1)若不等式对任意的都成立,求实数m的取值范围;

2)关于x的方程上有且只有一个解,求实数k的取值范围.

参考数据:.

【答案】12

【解析】

由题意,将转化为,进而转化为,求出单调性得出最值即可求出m取值取值范围;
将方程上有且只有一个解,转化为
,研究其单调性和最值即可得到实数k的取值范围.

1)由题,即对任意的都成立,

,则为关于k的一次函数,.

因为

,因为

,则上单调递增,

所以,即m的取值范围是.

2)方程上有且只有一个解,

即关于x的方程上有且只有一个解.

整理方程得

,则

于是上单调递增.

因为,所以当时,,从而单调递减;

时,,从而单调递增.

因为,所以

所以实数k的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲袋中装有3个白球和5个黑球,乙袋中装有4个白球和6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后,再从乙袋中随机取出一个球放回甲袋中,则甲袋中白球没有减少的概率为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点在抛物线的准线上,且椭圆的短轴长为2,分别为椭圆的左,右焦点,分别为椭圆的左,右顶点,设点在第一象限,且轴,连接交椭圆于点,直线的斜率为.

(Ⅰ)求椭圆的方程;

(Ⅱ)若三角形的面积等于四边形的面积,求的值;

(Ⅲ)设点的中点,射线为原点)与椭圆交于点,满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将120202020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为(

A.56383B.57171C.59189D.61242

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求函数的单调递减区间;

2)若,对于给定实数,总存在实数,使得关于的方程恰有3个不同的实数根.

i)求实数的取值范围;

ii)记,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂连续6天对新研发的产品按事先拟定的价格进行试销,得到一组数据如下表所示

日期

4月1日

4月2日

4月3日

4月4日

4月5日

4月6日

试销价

9

11

10

12

13

14

产品销量

40

32

29

35

44

(1)试根据4月2日、3日、4日的三组数据,求关于的线性回归方程,并预测4月6日的产品销售量

(2)若选取两组数据确定回归方程,求选取得两组数据恰好是不相邻两天的事件的概率.

参考公式:

其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足.

1)若数列的首项为,其中,且构成公比小于0的等比数列,求的值;

2)若是公差为d(d0)的等差数列的前n项和,求的值;

3)若,且数列单调递增,数列单调递减,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为4,且经过点.

1)求椭圆的方程;

2)直线的斜率为,且与椭圆相交于两点(异于点),过的角平分线交椭圆于另一点.

i)证明:直线与坐标轴平行;

ii)当时,求四边形的面积

查看答案和解析>>

同步练习册答案