精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}是公比大于1的等比数列,Sn为数列{an}的前n项和,已知S3=7,且a1+3,3a2 , a3+4构成等差数列.
(1)求数列{an}的通项公式;
(2)求数列{an+log2an}(n∈N*)的前10项和T10

【答案】
(1)解:由题意可得: ,∴14﹣a2=6a2,解得a2=2,

=14,又q>1,解得q=2,a1=1,


(2)解:

∴an+log2an=2n1+n﹣1.


【解析】(1)利用等差数列与等比数列的通项公式即可得出.(2)利用等差数列与等比数列的求和公式即可得出.
【考点精析】利用数列的前n项和和数列的通项公式对题目进行判断即可得到答案,需要熟知数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=xex , g(x)=﹣(x+1)2+a,若x1 , x2∈R,使得f(x2)≤g(x1)成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 平面 分别为的中点, 是边长为2 的正三角形, .

(1)证明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将正方形ABCD沿对角线BD折成直二面角A﹣BD﹣C,有如下四个结论:
①AC⊥BD;
②△ACD是等边三角形;
③AB与平面BCD成60°的角;
④AB与CD所成的角为60°;
其中正确结论是(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,直线的参数方程为,曲线的极坐标方程为.

(1)写出直线的直角坐标方程和曲线的普通方程;

(2)求直线与曲线的交点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

(Ⅰ)求实数 的值;

(Ⅱ)若 ,试判断 三者是否有确定的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b为正实数,且 ,若a+b﹣c≥0对于满足条件的a,b恒成立,则c的取值范围为( )
A.
B.(﹣∞,3]
C.(﹣∞,6]
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

写出曲线的极坐标的方程以及曲线的直角坐标方程;

若过点(极坐标)且倾斜角为的直线与曲线交于 两点,弦的中点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化妆品生产企业为了占有更多的市场份额,拟在2010年世博会期间进行一系列促销活动,经过市场调查和测算,化妆品的年销量x万件与年促销费t万元之间满足3﹣x与t+1成反比例,如果不搞促销活动,化妆品的年销量只能是1万件,已知2010年生产化妆品的设备折旧、维修等固定费用为3万元,每生产1万件化妆品需要再投入32万元的生产费用,若将每件化妆品的售价定为:其生产成本的150%与平均每件促销费的一半之和,则当年生产的化妆品正好能销完.
(1)将2010年利润y(万元)表示为促销费t(万元)的函数;
(2)该企业2010年的促销费投入多少万元时,企业的年利润最大?
(注:利润=销售收入﹣生产成本﹣促销费,生产成本=固定费用+生产费用)

查看答案和解析>>

同步练习册答案