精英家教网 > 高中数学 > 题目详情

已知动圆
(1)当时,求经过原点且与圆相切的直线的方程;
(2)若圆与圆内切,求实数的值.

(1)(2)

解析试题分析:(1)时圆心为,半径为2。当过原点的直线斜率不存在时恰好与此圆相切,此时切线方程为;当过原点的直线斜率存在时设直线方程为,当直线与圆相切时圆心到直线的距离等于半径2,可求得的值,从而可得切线方程。(2)圆的圆心,半径为;圆的圆心,半径为4。当两圆内切时两圆心距等于两半径的差的绝对值,从而可得的值。
(1)
当直线的斜率不存在时,方程为,(3分)
当直线的斜率存在时,设方程为,由题意得
所以方程为(6分)
(2),由题意得,(9分)
两边平方解得
考点:1直线和圆相切;2点到线的距离;3两圆的位置关系。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆的方程为,直线,设点
(1)若点在圆外,试判断直线与圆的位置关系;
(2)若点在圆上,且,过点作直线分别交圆两点,且直线的斜率互为相反数;
① 若直线过点,求的值;
② 试问:不论直线的斜率怎样变化,直线的斜率是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,圆:,过点的动直线与圆交于两点,线段的中点为为坐标原点.
(1)求的轨迹方程;
(2)当时,求的方程及的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知实数
(1)求直线y=ax+b不经过第四象限的概率:
(2)求直线y=ax+b与圆有公共点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆C0(a>b>0,a,b为常数),动圆C1:x2+y2=t12,b<t1<a.点A1,A2分别为C0的左,右顶点,C1与C0相交于A,B,C,D四点.

(1)求直线AA1与直线A2B交点M的轨迹方程;
(2)设动圆C2:x2+y2=t22与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:t12+t22为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:圆C过点A(6,0),B(1,5)且圆心在直线上,求圆C的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求过直线与已知圆的交点,且在两坐标轴上的四个截距之和为8的圆的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,设点是直线上的两点,它们的横坐标分别是,点在线段上,过点作圆的切线,切点为
(1)若,求直线的方程;
(2)经过三点的圆的圆心是,求线段(为坐标原点)长的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知直线与圆相交于两点,若点M在圆上,且有为坐标原点),则实数=    ▲   .

查看答案和解析>>

同步练习册答案