精英家教网 > 高中数学 > 题目详情
a,b∈R+,a+b≥2
ab
-------大前提,
 x+
1
x
≥2
x•
1
x
,------小前提,
所以x+
1
x
≥2
,-------结  论,
以上推理过程中的错误为
(2)(3)
(2)(3)

(1)大前提      (2)小前提       (3)结论        (4)无错误.
分析:三段论包含:大前提、小前提,结论,当且仅当大前提、小前提正确时,结论正确,由于小前提没有条件x∈R+,故小前提错误,从而结论错误.
解答:解:根据基本不等式可知,大前提正确,而小前提,没有条件x∈R+,故小前提错误,从而结论错误
故答案为:(2)(3)
点评:本题的考点是演绎推理,主要考查三段论.三段论包含:大前提、小前提,结论,当且仅当大前提、小前提正确时,结论正确
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:
(1)对任意a,b∈R,a*b=b*a;
(2)对任意a∈R,a*0=a;
(3)对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
关于函数f(x)=(2x)*
1
2x
的性质,有如下说法:
①函数f(x)的最小值为3;
②函数f(x)为奇函数;
③函数f(x)的单调递增区间为(-∞,-
1
2
),(
1
2
,+∞)

其中所有正确说法的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数集R中定义一种运算“*”,对于任意给定的a,b∈R,a*b为唯一确定的实数,且具有性质;
(1)对任意a,b∈R,a*b=b*a;
(2)对任意a∈R,a*0=a;
(3)对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
关于函数f(x)=(3x)*(
1
3x
)
的性质,有如下说法:
①函数f(x)的最小值为3;
②函数f(x)为奇函数;
③函数f(x)的单调递增区间为(-∞,-
1
3
),(
1
3
,+∞)

其中所有正确说法的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江二模)在实数集R中定义一种运算“⊕”,对任意a,b∈R,a⊕b为唯一确定的实数且具有性质:
(1)对任意a,b∈R,有a⊕b=b⊕a;
(2)对任意a∈R,有a⊕0=a;
(3)对任意a,b,c∈R,有(a⊕b)⊕c=c⊕(ab)+(a⊕c)+(c⊕b)-2c.
已知函数f(x)=x2
1x2
,则下列命题中:
(1)函数f(x)的最小值为3;
(2)函数f(x)为奇函数;
(3)函数f(x)的单调递增区间为(-1,0)、(1,+∞).
其中正确例题的序号有
(1)(3)
(1)(3)

查看答案和解析>>

科目:高中数学 来源:枣庄一模 题型:单选题

在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:
(1)对任意a,b∈R,a*b=b*a;
(2)对任意a∈R,a*0=a;
(3)对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
关于函数f(x)=(2x)*
1
2x
的性质,有如下说法:①函数f(x)的最小值为3;②函数f(x)为奇函数;③函数f(x)的单调递增区间为(-∞,-
1
2
),(
1
2
,+∞)
.其中所有正确说法的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案