精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=ax3+c,且f′(1)=6,函数在[1,2]上的最大值为20,则c的值为(  )
A.1B.4C.-1D.0

分析 求出函数的导数,利用导函数值求出a,判断函数的单调性,然后求解函数的最大值,推出c即可.

解答 解:∵f′(x)=3ax2,∴f′(1)=3a=6,∴a=2.当x∈[1,2]时,f′(x)=6x2>0,即f(x)在[1,2]上是增函数,∴f(x)max=f(2)=2×23+c=20,∴c=4.
故选:B.

点评 本题考查函数的导数的应用,函数的单调性以及函数的最值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边分别为a,b,c,$cosC=\frac{3}{10}$.
(1)若$\overrightarrow{CA}•\overrightarrow{CB}=\frac{9}{2}$,求△ABC的面积;
(2)设向量$\overrightarrow x=(2sinB,-\sqrt{3})$,$\overrightarrow y=(cos2B,1-2{sin^2}\frac{B}{2})$,且$\overrightarrow x∥\overrightarrow y$,求角B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$sinα-2cosα=\frac{{\sqrt{10}}}{2}$,则tan2α=(  )
A.$\frac{4}{3}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点F(-2,0)在以原点为圆心的圆O内,且过F的最短的弦长为2.
(1)求圆O的方程;
(2)过F任作一条与两坐标标轴都不垂直的弦AB,若点M在x轴上,且使得MF为△AMB的一条内角平分线,求M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)的定义域是(0,+∞),f'(x)是f(x)的导数,且满足f(x)>f'(x),则不等式ex+2•f(x2-x)>ex2•f(2)的解集是(-1,0)∪(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题中错误的是(  )
A.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ
B.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
C.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
D.如果平面α⊥平面β,α∩β=l,过α内任意一点作l的垂线m,则m⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“z1与z2互为共轭复数”是“z1z2∈R”的(  )条件.
A.充分不必要B.必要不充分
C.充要条件D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若关于x的方程x2-x-(m+1)=0在[-1,1]上有解,则m的取值范围是[-$\frac{5}{4}$,1].(结果写成区间形式)

查看答案和解析>>

同步练习册答案