精英家教网 > 高中数学 > 题目详情
已知椭圆的右焦点为,设短轴的一个端点为,原点到直线的距离为,过原点和轴不重合的直线与椭圆相交于两点,且.
(1) 求椭圆的方程;
(2) 是否存在过点的直线与椭圆相交于不同的两点且使得成立?若存在,试求出直线的方程;若不存在,请说明理由.
解析:(1)由………………………….1分
又原点到直线的距离为………….2分

故椭圆方程为……………………. …………4分
(2)显然当直线轴垂直时不可能满足条件……. …………5分
故可设存在满足条件的直线的方程为,带入椭圆的方程得

因为直线与椭圆相交于不同的两点,设两点的坐标分别为
………………. …………7分
因为,即
所以
所以
解得………………. …………10分
因为为不同的两点,所以

所以………………. …………11分

所以存在满足条件的直线,且其方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知直线,圆O:=36(O为坐标原点),椭圆C:=1(a>b>0)的离心率为e=,直线l被圆O截得的弦长与椭圆的长轴长相等。
(I)求椭圆C的方程;(II)过点(3,0)作直线l,与椭圆C交于A,B两点设(O是坐标原点),是否存在这样的直线l,使四边形为ASB的对角线长相等?若存在 ,求出直线l的方程,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的离心率,长轴的左右两个端点分别为
(1)求椭圆C的方程;
(2)点在该椭圆上,且,求点轴的距离;
(3)过点(1,0)且斜率为1的直线与椭圆交于P,Q两点,求△OPQ的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分13分)
P为椭圆上任意一点,为左、右焦点,如图所示.
(1)若的中点为,求证:
(2)若∠,求|PF1|·|PF2|之值;
(3)椭圆上是否存在点P,使·=0,若存在,求出P点的坐标,若不存在,试说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(理)已知有相同两焦点F1、F2的椭圆 + y2=1(m>1)和双曲线 - y2=1(n>0),P是它们的一个交点,则ΔF1PF2的形状是(   )
A.锐角三角形B.直角三角形C.钝有三角形D.随m、n变化而变化

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆上的点,以为圆心的圆与轴相切于椭
圆的焦点,圆轴相交于两点.若为锐角三角形,则椭圆的离心率
的取值范围为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知焦距为4的椭圆的左、右顶点分别为,椭圆的右焦点为,过作一条垂直于轴的直线与椭圆相交于,若线段的长为
(1)求椭圆的方程;
(2)设是直线上的点,直线与椭圆分别交于点,求证:直线必过轴上的一定点,并求出此定点的坐标;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的离心率,右焦点到直线的距离为,过的直线交椭圆于两点.(Ⅰ) 求椭圆的方程;(Ⅱ) 若直线轴于,,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆上的点到右焦点F的最小距离是到上顶点的距离为,点是线段上的一个动点.
(I)求椭圆的方程;
(Ⅱ)是否存在过点且与轴不垂直的直线与椭圆交于两点,使得,并说明理由.

查看答案和解析>>

同步练习册答案