精英家教网 > 高中数学 > 题目详情
4.在正方形ABCD中,AB=AD=2,M,N分别为边BC,CD上的两个动点且MN=$\sqrt{2}$,则$\overline{AM}$•$\overline{AN}$的取值范围为(  )
A.[4,8-2$\sqrt{2}$]B.[4-2$\sqrt{2}$,8]C.[4,8+2$\sqrt{2}$]D.[4-2$\sqrt{2}$,8-2$\sqrt{2}$]

分析 如图所示,设M(2,y),N(x,2),$(2-\sqrt{2}≤x≤2,2-\sqrt{2}≤y≤2)$.由于MN=$\sqrt{2}$,可得(x-2)2+(y-2)2=2.则$\overline{AM}$•$\overline{AN}$=2x+2y=t,数形结合即可得出.

解答 解:如图所示,
设M(2,y),N(x,2),$(2-\sqrt{2}≤x≤2,2-\sqrt{2}≤y≤2)$.
∵MN=$\sqrt{2}$,
∴$\sqrt{(x-2)^{2}+(y-2)^{2}}$=$\sqrt{2}$,化为(x-2)2+(y-2)2=2.
则$\overline{AM}$•$\overline{AN}$=2x+2y=t,
由$\frac{|4+4-t|}{\sqrt{8}}$=$\sqrt{2}$,解得t=4或12(舍去).
把x=2$-\sqrt{2}$,y=2代入可得t=8-2$\sqrt{2}$.
综上可得:t∈$[4,8-2\sqrt{2}]$.
故选:A.

点评 本题考查了数量积运算性质、两点之间的距离公式、直线与圆相切相交性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知△ABC的内角A、B、C所对应的边分别是a、b、c,$\overrightarrow{p}$=(asin2C,c),$\overrightarrow{q}$=($\frac{1}{sin(A+B)}$,1),且$\overrightarrow{p}$•$\overrightarrow{q}$=2b.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某人向正东方向走2$\sqrt{3}$千米后,再沿北偏西60°方向走了3千米,结果他离出发点恰好x千米,那么x的值为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{21-6\sqrt{3}}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若直线l1:ax+2y+6=0与直线l2:x+(a-1)y+(a2-1)=0平行而不重合,则a等于(  )
A.-1或2B.-1C.2D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,M为曲线y=-$\frac{4}{x}$上的一点.过点M作x轴、y轴的垂线.垂足分别为E、F.分别交直线y=$\frac{\sqrt{3}}{3}$x+m于点D、C两点.若直线y=$\frac{\sqrt{3}}{3}$x+m与y轴交于点A.与x轴相交于点B;
(1)若四边形MEOF为正方形,求M的坐标;
(2)求AD•BC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知三棱锥E-ABD各个面均为直角三角形,且Rt△ADE的直角顶点为A,其中AE=AB,∠ABD=$\frac{π}{6}$,以AB为直径在平面ABD内画圆,且经过点D,任取圆上一点C(不与A,B两点重合).
(1)求证:△BCE为直径三角形;
(2)若四边形ABCE为一个等腰梯形,且BC=1,求几何体C-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}中,a1=$\frac{3}{2}$,2an+1=an+n+2
(1)证明数列{an-n}是等比数列;
(2)设bn=2nan,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设奇函数f(x)(x∈R)在(-∞,0)内是减函数,且有f(2a2+a+1)<f(3a2-2a+1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在空间直角坐标系Oxy中,$\overrightarrow{AB}=-\overrightarrow{{e}_{1}}+2\overrightarrow{{e}_{2}}-3\overrightarrow{{e}_{3}}$($\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}},\overrightarrow{{e}_{3}}$)分别是与x轴、y轴、z轴的正方向同向的单位向量),则点B的坐标为(  )
A.(-$\overrightarrow{{e}_{1}},2\overrightarrow{{e}_{2}},-3\overrightarrow{{e}_{3}}$)B.(-1,2,-3)C.(1,-2,3)D.不能确定

查看答案和解析>>

同步练习册答案