精英家教网 > 高中数学 > 题目详情
半圆O的直径为2,A为直径延长线上的一点,OA=2,B为半圆上任意一点,以AB
为边向外作正三角形ABC,问:B在什么位置时,四边形OACB的面积最大,并求出面积的最大值.
分析:设∠AOB=θ,AB=x,则由余弦定理求得 x2=5-4cosθ.再利用两角和差的正弦公式化简SOACB =S△AOB+S△ABC 的解析式为 
5
3
4
+2sin(θ-
π
3
)
,从而求得SOACB的面积取得最大值.
解答:解:设∠AOB=θ,则SOACB =S△AOB+S△ABC
设AB=x,则x2=OB2+OA2-2OB•OAcosθ=12+22-2×1×2•cosθ=5-4cosθ.
故 SOACB=S△AOB+S△ABC=
1
2
×1×2•sinθ
+
1
2
•x•x•sin
π
3
=sinθ+
3
4
(5-4cosθ)
=
5
3
4
+sinθ-
3
cosθ
=
5
3
4
+2sin(θ-
π
3
)

∴当sin(θ-
π
3
)=1
,即θ=
6
时,SOACB的面积取得最大值,并且最大值是
5
3
4
+2
点评:本题主要余弦定理的应用,两角和差的正弦公式、正弦函数的最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,半圆O的直径为2,A为半圆直径的延长线上的一点,且OA=2,B为半圆上任一点,以AB为边作等边△ABC,问B在什么地方时,四边形OACB的面积最大?并求出这个面积的最大值.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,半圆O的直径为2,A为直径延长线上一点,且OA=2,C为半圆上任意一点,以AC为直角边作等腰直角△ABC,求四边形OABC的面积最大值.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学精品复习10:定比分点、平移、正余弦定理(解析版) 题型:解答题

如图所示,半圆O的直径为2,A为半圆直径的延长线上的一点,且OA=2,B为半圆上任一点,以AB为边作等边△ABC,问B在什么地方时,四边形OACB的面积最大?并求出这个面积的最大值.

查看答案和解析>>

科目:高中数学 来源:1977年上海市高考数学试卷(理科)(解析版) 题型:解答题

如图所示,半圆O的直径为2,A为半圆直径的延长线上的一点,且OA=2,B为半圆上任一点,以AB为边作等边△ABC,问B在什么地方时,四边形OACB的面积最大?并求出这个面积的最大值.

查看答案和解析>>

同步练习册答案