精英家教网 > 高中数学 > 题目详情

(本题满分12分)

设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点.

(Ⅰ)求椭圆E的方程;

(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交A,B且

?若存在,写出该圆的方程,若不存在说明理由。

 

七彩教育网(www.7caiedu.cn)

 

 

 

【答案】

(1)

(2)存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且

【解析】

试题分析:(1)因为椭圆E: (a,b>0)过M(2,),N(,1)两点,

所以解得所以椭圆E的方程为

(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组,即,

则△=,即

 

要使,需使,即,所以,所以,

所以,所以,即,

因为直线为圆心在原点的圆的一条切线,

所以圆的半径为,,,

所求的圆为,此时圆的切线都满足,

而当切线的斜率不存在时切线为与椭圆的两个交点为满足,

综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且

考点:本题主要考查椭圆的标准方程,直线与椭圆的位置关系,圆与椭圆的位置关系。

点评:中档题,涉及直线与圆锥曲线的位置关系问题,往往要利用韦达定理。存在性问题,往往从假设存在出发,运用题中条件探寻得到存在的是否条件具备。(2)小题解答中,集合韦达定理,应用平面向量知识证明了圆的存在性。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知数列是首项为,公比的等比数列,,

,数列.

(1)求数列的通项公式;(2)求数列的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题

(本题满分12分,第1小题6分,第2小题6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB

(2) 若,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题

(本题满分12分)

设函数为常数),且方程有两个实根为.

(1)求的解析式;

(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题

(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)

如图所示,直二面角中,四边形是边长为的正方形,上的点,且⊥平面

(Ⅰ)求证:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

 

查看答案和解析>>

同步练习册答案