精英家教网 > 高中数学 > 题目详情
(2012•长宁区一模)已知函数 f(x)的定义域为R,且对任意 x∈Z,都有 f(x)=f(x-1)+f(x+1).若f(-1)=6,f(1)=7,则 f(2012)+f(-2012)=
-13
-13
分析:由题设条件知,理解对任意正整数x,都有f(x)=f(x-1)+f(x+1)很关键,本题已知自变量±1与±2012差值太大,两函数值之间的关系一般要借助函数的周期性找到关联,考查恒等式,可构造出f(x+1)=f(x)+f(x+2),与f(x)=f(x-1)+f(x+1)联立解出函数的周期,再求函数值
解答:解:解:因为f(x)=f(x-1)+f(x+1)
所以f(x+1)=f(x)+f(x+2)
两式相加得0=f(x-1)+f(x+2)
即:f(x+3)=-f(x)
∴f(x+6)=f(x)
f(x)是以6为周期的周期函数
2012=6×335+2,-2012=-6×335-2
∴f(2012)=f(2)=-f(-1)=-6
f(-2012)=f(-2)=-f(1)=-7
∴f(2012)+f(-2012)=-13
故答案为-13
点评:本题考查对抽象函数表达式的理解和运用,解题的关键是由恒等变形得出函数的周期,本题的难点观察出解题的方向是研究函数的周期性,此类题有一个明显的特征那就是题设条件中必有恒等式,且要求的函数值自变量与已知函数值的自变量差值较大,不可能通过恒等式变形求出,题后注意总结这一特征,方便以后遇到同类题时能快速想到解题的方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•长宁区一模)设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求k值;
(2)若f(1)<0,试判断函数单调性并求使不等式f(x2+tx)+f(4-x)<0恒成立的t的取值范围;
(3)若f(1)=
32
,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长宁区一模)已知平面向量
a
=(1,-3),
b
=(4,-2),λ
a
+
b
a
垂直,则λ是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长宁区一模)x>0,y>0,2x+y=
1
3
,则
1
x
+
1
y
的最小值是
9+6
2
9+6
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长宁区一模)从总体中抽取一个样本是5,6,7,8,9,则该样本的方差是
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长宁区一模)等比数列{an}的首项与公比分别是复数2+
1
3
i
(i是虚数单位)的实部与虚部,则数列{an}的各项和的值为
3-
1
3n-1
3-
1
3n-1

查看答案和解析>>

同步练习册答案