精英家教网 > 高中数学 > 题目详情
11.如图,已知四边形ABCD为平行四边形,BC⊥平面ABE,AE⊥BE,M为线段AB的中点,N为线段DE的中点,P为线段AE的中点.求证:MN⊥EA.

分析 证明MP⊥AE,NP⊥AE,可得AE⊥平面MNP,从而可证明MN⊥EA.

解答 证明:∵AE⊥BE,MP∥BE,∴MP⊥AE,
又BC⊥平面ABE,AE?平面ABE,∴BC⊥AE,
∵N为DE的中点,P为AE的中点,∴NP∥AD,
∵AD∥BC,∴NP∥BC,
∴NP⊥AE,
又∵NP∩MP=P,NP,MP?平面PMN,
∴AE⊥平面MNP,
∵MN?平面MNP,
∴MN⊥EA.

点评 本题考查线面垂直的判定与性质,考查学生分析解决问题的能力,正确运用线面垂直的判定与性质是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设直线x-3y+m=0(m≠0)与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)两条渐近线分别交于点A、B,若点P(m,0)满足($\overrightarrow{PA}$+$\overrightarrow{PB}$)⊥$\overrightarrow{AB}$,则该双曲线的离心率是(  )
A.$\frac{\sqrt{5}}{4}$B.$\frac{\sqrt{5}}{2}$C.$\frac{5}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知定义在R上的增函数f(x)满足f(x)>0,且对于任意的m,n∈R都有f(m)•f(n)=f(m+n).
(1)求f(0)的值;
(2)求证$\frac{f(m)}{f(n)}$=f(m-n)(m,n∈R);
(3)若f(4)=4,且存在x∈[1,t](t>1)使得f(x2)≤$\frac{1}{8}$f(kx),求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列函数的定义域和值域:
(1)y=tan(x+$\frac{π}{4}$);
(2)y=$\sqrt{\sqrt{3}-tanx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求证:4n>(n+3)•3n-1(n∈N*,且n>2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若关于x的不等式3ax2+2x-1>0在(2,+∞)上有解,则实数a的取值范围是[-$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若$\frac{3}{x+1}$≥1,求y=4x-2x+1的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知sinθcosθ=$\frac{60}{169}$,且$\frac{π}{4}$<θ<$\frac{π}{2}$,则sinθ=$\frac{12}{13}$,cosθ=$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(α)=$\frac{sin(π-α)•cos(2π-α)}{cos(-π-α)•tan(π-α)}$,则f(-$\frac{31π}{3}$)=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案