精英家教网 > 高中数学 > 题目详情

(本小题共13分)

       若数列满足,数列数列,记=

       (Ⅰ)写出一个满足,且〉0的数列

       (Ⅱ)若,n=2000,证明:E数列是递增数列的充要条件是=2011;

       (Ⅲ)对任意给定的整数n(n≥2),是否存在首项为0的E数列,使得=0?如果存在,写出一个满足条件的E数列;如果不存在,说明理由。

(共13分)

解:(Ⅰ)0,1,2,1,0是一具满足条件的E数列A5

(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5

(Ⅱ)必要性:因为E数列A5是递增数列,

所以.

所以A5是首项为12,公差为1的等差数列.

所以a2000=12+(2000—1)×1=2011.

充分性,由于a2000—a1000≤1,

a2000—a1000≤1

……

a2—a1≤1

       所以a2000—a≤19999,即a2000≤a1+1999.

       又因为a1=12,a2000=2011,

       所以a2000=a1+1999.

       故是递增数列.

       综上,结论得证。

       (Ⅲ)令

       因为

       ……

      

所以

因为

所以为偶数,

所以要使为偶数,

即4整除.

时,有

的项满足,

不能被4整除,此时不存在E数列An

使得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题共13分)

已知函数

   (I)若x=1为的极值点,求a的值;

   (II)若的图象在点(1,)处的切线方程为

(i)求在区间[-2,4]上的最大值;

(ii)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:2011届北京市丰台区高三年级第二学期统一练习理科数学 题型:解答题


(本小题共13分)
已知函数
(Ⅰ)若处取得极值,求a的值;
(Ⅱ)求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市高三压轴文科数学试卷(解析版) 题型:解答题

(本小题共13分)

已知向量,设函数.

(Ⅰ)求函数上的单调递增区间;

(Ⅱ)在中,分别是角的对边,为锐角,若的面积为,求边的长.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市丰台区高三下学期统一练习数学理卷 题型:解答题

(本小题共13分)

某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取球.获奖规则如下:依次取到标有“生”“意”“兴”“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖.

(Ⅰ)求分别获得一、二、三等奖的概率;

(Ⅱ)设摸球次数为,求的分布列和数学期望.

 

查看答案和解析>>

科目:高中数学 来源:北京市宣武区2010年高三第一次质量检测数学(文)试题 题型:解答题

(本小题共13分)
已知函数
(I)当a=1时,求函数的最小正周期及图象的对称轴方程式;
(II)当a=2时,在的条件下,求的值.

查看答案和解析>>

同步练习册答案