精英家教网 > 高中数学 > 题目详情

【题目】某班主任对全班50名学生学习积极性和参加社团活动情况进行调查,统计数据如表所示

参加社团活动

不参加社团活动

合计

学习积极性高

17

8

25

学习积极性一般

5

20

25

合计

22

28

50

(Ⅰ)如果随机从该班抽查一名学生,抽到参加社团活动的学生的概率是多少?抽到不参加社团活动且学习积极性一般的学生的概率是多少?
(Ⅱ)试运用独立性检验的思想方法分析:学生的学习积极性与参加社团活动情况是否有关系?并说明理由.
x2=

P(x2≥k)

0.05

0.01

0.001

K

3.841

6.635

10.828

【答案】解:(Ⅰ)积极参加社团活动的学生有22人,总人数为50人,
所以随机从该班抽查一名学生,抽到参加社团活动的学生的概率是=
抽到不参加社团活动且学习积极性一般的学生为20人,
所以其概率为=
(Ⅱ)x2=≈11.7
∵x2>10.828,
∴有99.9%的把握认为学生的学习积极性与参加社团活动情况有关系.
【解析】(Ⅰ)求出积极参加社团活动的学生有22人,总人数为50人,得到概率,不参加社团活动且学习积极性一般的学生为20人,得到概率.
(Ⅱ)根据条件中所给的数据,代入求这组数据的观测值的公式,求出观测值,把观测值同临界值进行比较,得到有99.9%的把握认为学生的学习积极性与参加社团活动情况有关系。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义域为R的偶函数f(x)满足对任意的x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣(x﹣2)2+1.若函数y=f(x)﹣a(x﹣)在(0,+∞)上恰有三个零点,则实数a的取值范围是(  )
A.( , 3)
B.(
C.(3,12)
D.( , 12)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于任意实数a,b,定义max{a,b}= , 已知在[﹣2,2]上的偶函数f(x)满足当0≤x≤2时,f(x)=max{2x﹣1,2﹣x}若方程f(x)﹣mx+1=0恰有两个根,则m的取值范围是(  )
A.[﹣2,﹣eln2)∪(eln2,2]
B.[﹣eln2,0)∪(0,eln2]
C.[﹣2,0)∪(0,2]
D.[﹣e,﹣2)∪(2,e]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱中,的中点,,求证: (1)

(2)∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)已知过原点的动直线与圆 相交于不同的两点

1)求圆的圆心坐标;

2)求线段的中点的轨迹的方程;

3)是否存在实数,使得直线 与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx(a>0),e为自然对数的底数.
(Ⅰ)若过点A(2,f(2))的切线斜率为2,求实数a的值;
(Ⅱ)当x>0时,求证:f(x)≥a(1﹣);
(Ⅲ)在区间(1,e)上>1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为的四个顶点为顶点的四边形的面积为

(1)求椭圆的方程

(2)设分别为椭圆的左右顶点是直线上不同于点的任意一点若直线分别与椭圆相交于异于的点试探究是否在以为直径的圆内证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1, 圆心在.

1)若圆心也在直线上,过点作圆的切线,求切线方程;

2)若圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A、B、C的对边分别为a、b、c,且满足cos2A﹣cos2B=2cos( ﹣A)cos( +A).
(1)求角B的值;
(2)若b= 且b≤a,求2a﹣c的取值范围.

查看答案和解析>>

同步练习册答案