精英家教网 > 高中数学 > 题目详情
18.在平面直角坐标系中,点P(-2,5)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 根据直角坐标系即可求出答案.

解答 解:-2<0,5>0,
∴点P(-2,5)在第二象限,
故选:B.

点评 本题考查了各象限的坐标的符号特点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知ln2=a,ln3=b,用a与b表示下列各式:
(1)ln12;(2)ln216;
(3)ln36;(4)ln(29×311

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.不等式$\frac{5-x}{x-2}$<0的解集是{x|x>5或x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A、B、C所对的边分别为a、b、c,AD为边BC上的高,已知AD=$\frac{\sqrt{3}}{6}$a,b=1.
(Ⅰ)若A=$\frac{2}{3}$π,求c;
(Ⅱ)求c+$\frac{1}{c}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求过点M(-2,1)和N(4,3)的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=x3+ax2+bx+c在x=1,x=-$\frac{2}{3}$时取得极值.
(1)求a,b的值;
(2)若x∈[-1,2],f(x)取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\left\{\begin{array}{l}{x=\frac{3at}{1+{t}^{2}}}\\{y=\frac{3a{t}^{2}}{1+{t}^{2}}}\end{array}\right.$求在t=2处的切线方程和法线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{x}{x+3}$,数列{an}满足a1=1,an+1=f(an).
(1)证明:{$\frac{1}{{a}_{n}}$+$\frac{1}{2}$}是等比数列,并求数列{an}的通项公式;
(2)若数列{bn}满足bn=$\frac{{3}^{n}}{2}$anan+1,Sn=b1+b2+…+bn,求证:Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设x,y满足约束条件:$\left\{\begin{array}{l}{y≤x+1}\\{y≤2}\\{2x+y≤7}\end{array}\right.$,则z=x+y的最大值与最小值分别为(  )
A.$\frac{7}{2}$,3B.5,$\frac{7}{2}$C.5,3D.4,3

查看答案和解析>>

同步练习册答案