精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求的极大值点;

2)当时,若过点存在3条直线与曲线相切,求t的取值范围.

【答案】1)见解析;(2.

【解析】

1)先求导数,求出导函数的零点,安照三种情况讨论的极大值点;

2)设切点,利用该点的导数等于切线斜率、切线过点两个条件整理得到关于的方程,进一步研究函数的取值情况.

解:(1

,得

,则当时,

时,

上单调递增,在上单调递减,

此时的极大值点为

,则当时,

时,

上单调递增,在上单调递减,

此时的极大值点为

上单调递增,无极值.

2)设过点的直线与曲线相切于点

,且切线斜率

所以切线方程为

因此,整理得

构造函数

若过点存在3条直线与曲线相切等价于有三个不同的零点的关系如下表:

+

0

0

+

极大值

极小值

所以的极大值为,极小值为

要使有三个解,即,解得

因此,当过点存在3条直线与曲线相切时,

t的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面为等边三角形,且垂直于底面分别是的中点.

1)证明:平面平面

2)已知点在棱上且,求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂在制造产品时需要用到长度为698mmA型和长度为518mmB型两种钢管,工厂利用长度为4000mm的钢管原材料,裁剪成若干A型和B型钢管。假设裁剪时损耗忽略不计,裁剪后所剩废料与原材料的百分比称为废料率.

1)有两种裁剪方案的废料率小于4.5%,请说明这两种方案并计算它们的废料率;

2)工厂现有100根原材料钢管,一根A型和一根B型钢管为一套毛胚。按(1)中的方案裁剪,最多可裁剪多少套毛胚?最终的废料率为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当今世界科技迅猛发展,信息日新月异.为增强全民科技意识,提高公众科学素养,某市图书馆开展了以“亲近科技、畅想未来”为主题的系列活动,并对不同年龄借阅者对科技类图书的情况进行了调查.该图书馆从只借阅了一本图书的借阅者中随机抽取100名,数据统计如表:

借阅科技类图书(人)

借阅非科技类图书(人)

年龄不超过50

20

25

年龄大于50

10

45

1)是否有99%的把握认为年龄与借阅科技类图书有关?

2)该图书馆为了鼓励市民借阅科技类图书,规定市民每借阅一本科技类图书奖励积分2分,每借阅一本非科技类图书奖励积分1分,积分累计一定数量可以用积分换购自己喜爱的图书.用表中的样本频率作为概率的估计值.

i)现有3名借阅者每人借阅一本图书,记此3人增加的积分总和为随机变量ξ,求ξ的分布列和数学期望;

ii)现从只借阅一本图书的借阅者中选取16人,则借阅科技类图书最有可能的人数是多少?

附:K2,其中na+b+c+d

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的极大值点;

2)当时,若过点存在3条直线与曲线相切,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形中,EF分别为边的中点.现将沿着折叠到的位置,使得平面平面.

1)证明:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】元朝著名的数学家朱世杰在《四元玉鉴》中有一首诗:我有一壶酒,携着游春走.遇店添一倍,逢友饮一斗.”基于此情景,设计了如图所示的程序框图,若输入的,输出的,则判断框中可以填(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,已知点,直线,动点到点的距离比它到直线的距离小2.

1)求点的轨迹的方程;

2)设斜率为2的直线与曲线交于两点(点在第一象限),过点轴的平行线,问在坐标平面中是否存在定点,使直线交直线于点,且恒成立?若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|x+1||2x2|的最大值为M,正实数ab满足a+bM

1)求2a2+b2的最小值;

2)求证:aabbab

查看答案和解析>>

同步练习册答案