已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=-
(Ⅰ)求当x<0时,f(x)的解析式;
(Ⅱ)试确定函数y=f(x)(x≥0)的单调区间,并证明你的结论;
(Ⅲ)(理)若x1≥2,且x2≥2
证明:|f(x1)-f(x2)|<2.
解:(Ⅰ)若x<0则-x>0, ∵f(x)是偶函数, ∴f(x)=f(-x)=-=(x<0) (Ⅱ)设x1,x2是区间[0,+∞)上的任意两个实数,且0≤x1<x2, 则f(x1)-f(x2)== 当0≤x1<x2≤1时,x1-x2<0,x1x2-1<0 而x12+x1+1>0及x22+x2+1>0 ∴f(x1)-f(x2)>0即f(x)在[0,1]上为减函数 同理,当1<x1<x2时,f(x1)-f(x2)<0, 即f(x)在(1,+∞)上为增函数 (Ⅲ)(理)∵f(x)在(1,+∞)是增函数, 由x≥2得f(x)≥f(2)=-2 又x2+x+1>0,-7x<0 ∴f(x)=-<0, ∴-2≤f(x)<0 ∵x1,x2≥2 ∴-2≤f(x1)<0且-2≤f(x2)<0即0<-f(x2)≤2 ∴-2<f(x1)-f(x2)<2 ∴|f(x1)-f(x2)|<2 |
科目:高中数学 来源:成功之路·突破重点线·数学(学生用书) 题型:044
已知函数f(x)=2acos2x+bsinxcosx,且f(0)=2,f()=,
(1)求使f(x)>2的x的集合;
(2)若α-β≠kπ(k∈Z),且f(α)=f(β),求tan(α+β)的值.
查看答案和解析>>
科目:高中数学 来源:成功之路·突破重点线·数学(学生用书) 题型:044
已知函数f(x)=x3+(m-4)x2-3mx+(n-6)(x∈R)的图象关于原点对称,m,n为实常数.
(1)求m,n的值;
(2)试用单调性的定义证明f(x)在区间[-2,2]上是单调函数
(3)当x∈[-2,2]时,不等式f(x)≥(n-logma)logma恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:龙门中学、新丰一中、连平中学三校联考试题、高三数学(理) 题型:044
|
查看答案和解析>>
科目:高中数学 来源:2007龙门中学、新丰一中、连平中学三校联考试题、高三数学(文) 题型:044
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com