【题目】已知曲线C的极坐标方程是ρ=2cos θ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是(t为参数).
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)当m=2时,直线l与曲线C交于A、B两点,求|AB|的值.
【答案】(1)曲线C的直角坐标方程为(x-1)2+y2=1,直线l的普通方程为x-y-m=0;
(2).
【解析】
(1)先把曲线C的极坐标方程化为直角坐标方程,把直线的参数方程化为普通方程.(2)利用解直角三角形求直线和圆的弦长.
(1)由ρ=2cos θ,
得:ρ2=2ρcos θ,
所以x2+y2=2x,即(x-1)2+y2=1,
所以曲线C的直角坐标方程为(x-1)2+y2=1.
由得x=y+m,
即x-y-m=0,
所以直线l的普通方程为x-y-m=0.
(2)设圆心到直线l的距离为d,
由(1)可知直线l:x-y-2=0,
曲线C:(x-1)2+y2=1,
圆C的圆心坐标为(1,0),半径1,
则圆心到直线l的距离为d=.
所以|AB|=2=.
因此|AB|的值为.
科目:高中数学 来源: 题型:
【题目】在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.镇有基层干部60人,镇有基层干部60人,镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从三镇共选40名基层干部,统计他们走访贫困户的数量,并将走访数量分成5组,,绘制成如图所示的频率分布直方图.
(1)求这40人中有多少人来自镇,并估计三镇的基层干部平均每人走访多少贫困户;(同一组中的数据用该组区间的中点值作代表)
(2)如果把走访贫困户达到或超过25户视为工作出色,以频率估计概率,从三镇的所有基层干部中随机选取3人,记这3人中工作出色的人数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:,过其焦点作斜率为1的直线交抛物线于,两点,且线段的中点的纵坐标为4.
(1)求抛物线的标准方程;
(2)若不过原点且斜率存在的直线与抛物线相交于、两点,且.求证:直线过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义在上的函数,若同时满足:①存在闭区间,使得任取,都有(是常数);②对于内任意,当时总有,称为“平底型”函数.
(1)判断,是否为“平底型”函数?说明理由;
(2)设是(1)中的“平底型”函数,若对一切恒成立,求实数的范围;
(3)若,是“平底型”函数,求和的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在对人们休闲方式的调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.能否在犯错误的概率不超过2.5%的前提下认为性别与休闲方式是否有关系?
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某互联网大会上,为了提升安全级别,将5名特警分配到3个重要路口执勤,每个人只能选择一个路口,每个路口最少1人,最多3人,且甲和乙不能安排在同一个路口,则不同的安排方法有( )
A. 180种 B. 150种 C. 96种 D. 114种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在统计学中,偏差是指个别测定值与测定的平均值之差,在成绩统计时,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差.某高二班主任为了了解学生的偏科情况,对学生数学偏差(单位:分)与历史偏差(单位:分)之间的关系进行学科偏差分析,决定从全班52位同学中随机抽取一个容量为8的样本进行分析,得到他们的两科成绩偏差数据如下:
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学偏差 | 20 | 15 | 13 | 3 | 2 | |||
历史偏差 |
(1)已知与之间具有线性相关关系,求关于的线性回归方程;
(2)若这次考试该班数学平均分为118分,历史平均分为,试预测数学成绩126分的同学的历史成绩.
附:参考公式与参考数据
,,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,左、右焦点为,点在椭圆上,且点关于原点对称,直线的斜率的乘积为.
(1)求椭圆的方程;
(2)已知直线经过点,且与椭圆交于不同的两点,若,判断直线的斜率是否为定值?若是,请求出该定值;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com