精英家教网 > 高中数学 > 题目详情

【题目】已知曲线C的极坐标方程是ρ=2cos θ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是(t为参数).

(1)求曲线C的直角坐标方程和直线l的普通方程;

(2)当m=2时,直线l与曲线C交于AB两点,求|AB|的值.

【答案】(1)曲线C的直角坐标方程为(x-1)2y2=1,直线l的普通方程为xym=0;

(2).

【解析】

(1)先把曲线C的极坐标方程化为直角坐标方程,把直线的参数方程化为普通方程.(2)利用解直角三角形求直线和圆的弦长.

(1)由ρ=2cos θ

得:ρ2=2ρcos θ

所以x2y2=2x,即(x-1)2y2=1,

所以曲线C的直角坐标方程为(x-1)2y2=1.

xym

xym=0,

所以直线l的普通方程为xym=0.

(2)设圆心到直线l的距离为d

由(1)可知直线lxy-2=0,

曲线C:(x-1)2y2=1,

C的圆心坐标为(1,0),半径1,

则圆心到直线l的距离为d.

所以|AB|=2.

因此|AB|的值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.镇有基层干部60,镇有基层干部60,镇有基层干部80,每人都走访了若干贫困户,按照分层抽样,三镇共选40名基层干部,统计他们走访贫困户的数量,并将走访数量分成5,,绘制成如图所示的频率分布直方图.

(1)求这40人中有多少人来自,并估计三镇的基层干部平均每人走访多少贫困户;(同一组中的数据用该组区间的中点值作代表)

(2)如果把走访贫困户达到或超过25户视为工作出色,以频率估计概率,三镇的所有基层干部中随机选取3,记这3人中工作出色的人数为,的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆交于两点,为坐标原点.

(1)若直线斜率为1,过椭圆的右焦点,求弦的长;

(2)若,且为锐角,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过其焦点作斜率为1的直线交抛物线两点,且线段的中点的纵坐标为4.

(1)求抛物线的标准方程;

(2)若不过原点且斜率存在的直线与抛物线相交于两点,且.求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在上的函数,若同时满足:①存在闭区间,使得任取,都有是常数);②对于内任意,当时总有,称为“平底型”函数.

1)判断是否为“平底型”函数?说明理由;

2)设是(1)中的“平底型”函数,若对一切恒成立,求实数的范围;

3)若是“平底型”函数,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在对人们休闲方式的调查中,共调查了124人,其中女性70人,男性54.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.能否在犯错误的概率不超过2.5%的前提下认为性别与休闲方式是否有关系?

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某互联网大会上,为了提升安全级别,将5名特警分配到3个重要路口执勤,每个人只能选择一个路口,每个路口最少1人,最多3人,且甲和乙不能安排在同一个路口,则不同的安排方法有(

A. 180 B. 150 C. 96 D. 114

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在统计学中,偏差是指个别测定值与测定的平均值之差,在成绩统计时,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差.某高二班主任为了了解学生的偏科情况,对学生数学偏差(单位:分)与历史偏差(单位:分)之间的关系进行学科偏差分析,决定从全班52位同学中随机抽取一个容量为8的样本进行分析,得到他们的两科成绩偏差数据如下:

学生序号

1

2

3

4

5

6

7

8

数学偏差

20

15

13

3

2

历史偏差

1)已知之间具有线性相关关系,求关于的线性回归方程

2)若这次考试该班数学平均分为118分,历史平均分为,试预测数学成绩126分的同学的历史成绩.

附:参考公式与参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左、右焦点为,点在椭圆上,且点关于原点对称,直线的斜率的乘积为.

(1)求椭圆的方程;

(2)已知直线经过点,且与椭圆交于不同的两点,若,判断直线的斜率是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案