精英家教网 > 高中数学 > 题目详情

【题目】△ABC中,角A,B,C所对的边分别为a,b,c,S表示三角形的面积,若asinA+bsinB=csinC,且S= ,则对△ABC的形状的精确描述是(
A.直角三角形
B.等腰三角形
C.等腰或直角三角形
D.等腰直角三角形

【答案】D
【解析】解:∵asinA+bsinB=csinC,
∴由正弦定理可得:sin2A+sin2B=sin2C,可得:a2+b2=c2
∴C= ,△ABC是直角三角形.
又∵S= = acsinB,
×2accosB= acsinB,解得:sinB﹣cosB=0,可得: sin(B﹣ )=0,
∴B﹣ =kπ,可得:B=kπ+ ,k∈Z,
∵B∈(0, ),B﹣ ∈(﹣ ),
∴B﹣ =0,可得:B= ,A=π﹣B﹣C=
∴△ABC是等腰直角三角形.
故选:D.
【考点精析】关于本题考查的正弦定理的定义和余弦定理的定义,需要了解正弦定理:;余弦定理:;;才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数.

1)讨论的单调性;

2)设,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数g(x)=x2﹣2(x∈R), 则f(x)的值域是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣4x﹣6y+12=0,点A(3,5).
(1)求过点A的圆的切线方程;
(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的定义域为(
A.(﹣∞,11)
B.(1,11]
C.(1,11)
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线过点,其参数方程为为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

(2)已知曲线与曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式x2﹣ax﹣2>0的解集为{x|x<﹣1或x>b}(b>﹣1).
(1)求a,b的值;
(2)当m>﹣ 时,解关于x的不等式(mx+a)(x﹣b)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ()的焦距为4,左、右焦点分别为,且 与抛物线 的交点所在的直线经过.

(Ⅰ)求椭圆的方程;

(Ⅱ)过 的直线 交于两点,与抛物线无公共点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(n)=2n+1(n∈N*),集合A={1,2,3,4,5},B={3,4,5,6,7},记f(A)={n|f(n)∈A},f(B)={m|f(m)∈B},f(A)∩f(B)=(
A.{1,2}
B.{1,2,3}
C.{3,5}
D.{3,5,7}

查看答案和解析>>

同步练习册答案