精英家教网 > 高中数学 > 题目详情
已知点P是椭圆:(x≠0,y≠0)上的动点,是椭圆的两个焦点,O是坐标原点,若M是∠P的角平分线上一点,且·=0,则|OM|的取值范围是(  )
A.[0,3) 
B.(0,)  
C.[,3)  
D.[0,4]
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知点P是椭圆
x2
169
+
y2
144
=1
上一动点,点F1,F2是椭圆的左右两焦点.
(1)求该椭圆的长轴长、右准线方程;
(2)一抛物线以椭圆的中心为顶点、椭圆的右准线为准线,求抛物线标准方程;
(3)当∠F1PF2=30°时,求△PF1F2的面积;
(4)点Q是圆F2:(x-5)2+y2=25上一动点,求PF1+PQ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌二模)已知点P是椭圆:
x2
16
+
y2
8
=1(x≠0,y≠0)上的动点,F1,F2是椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且
F1M
MP
=0,则|OM|的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是椭圆
x2
36
+
y2
24
=1(x≠0,y≠0)
上的动点,F1,F2为椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且
F1M
MP
=0
,则|OM|的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,椭圆C1与椭圆C2中心在原点,焦点均在x轴上,且离心率相同.椭圆C1的长轴长为2
2
,且椭圆C1的左准线l:x=-2被椭圆C2截得的线段ST长为2
3
,已知点P是椭圆C2上的一个动点.
(1)求椭圆C1与椭圆C2的方程;
(2)设点A1为椭圆C1的左顶点,点B1为椭圆C1的下顶点,若直线OP刚好平分A1B1,求点P的坐标;
(3)若点M,N在椭圆C1上,点P,M,N满足
OP
=
OM
+2
ON
,则直线OM与直线ON的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

同步练习册答案