精英家教网 > 高中数学 > 题目详情

【题目】,分别为内角所对的边,且满足.

(Ⅰ)的大小;

(Ⅱ)现给出三个条件:.

试从中选出两个可以确定的条件,写出你的选择并以此为依据求的面积 (只需写出一个选定方案即可,选多种方案以第一种方案记分)

【答案】解:(Ⅰ)依题意得,即…………3

,…………6

(Ⅱ)方案一:选择①②

由正弦定理,得…………9

…………12

方案二:选择①③

由余弦定理…………9

,解得

所以…………12

说明:若选择②③,由得,不成立,这样的三角形不存在.

【解析】

试题(1)利用两角和公式对已知等式化简求得的值,进而求得;(2)选择①②利用正弦定理先求得的值,进而利用三角形面积公式求得三角形的面积.

试题解析:(1

.

2)选①②

.

.

①③

.

若选择②③,由得:

不成立,这样的三角形不存在.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数yfx),若在其定义域内存在x0,使得x0fx0)=1成立,则称函数fx)具有性质M

1)下列函数中具有性质M的有____

fx)=﹣x+2

fx)=sinxx[02π]

fx)=x,(x∈(0+∞))

fx

2)若函数fx)=a|x2|1)(x[1+∞))具有性质M,则实数a的取值范围是____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济的发展,居民收入逐年增长.某地区2014年至2018年农村居民家庭人均纯收入(单位:千元)的数据如下表:

年份

2014

2015

2016

2017

2018

年份代号

1

2

3

4

5

人均纯收入

5

6

7

8

10

1)求关于的线性回归方程;

2)利用(1)中的回归方程,分析2014年至2018年该地区农村居民家庭人均纯收入的变化情况,并预测2020年该地区农村居民家庭人均纯收入约为多少千元?

附:回归直线的斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着移动互联网的发展,与餐饮美食相关的手机应用软件层出不穷.现从使用AB两款订餐软件的商家中分别随机抽取50个商家,对它们的平均送达时间进行统计,得到频率分布直方图如下:

1)试估计使用A款订餐软件的50个商家的平均送达时间的众数及平均数(同一组中的数据用该组区间的中点值作代表).

2)根据以上抽样调查数据,将频率视为概率,回答下列问题:

①能否认为使用B款订餐软件平均送达时间不超过40分的商家达到75%

②如果你要从AB两款订餐软件中选择一款订餐,你会选择哪款?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.

1)求PX=2);

2)求事件X=4且甲获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)x2mlnxh(x)x2xa.

(1)a0时,f(x)h(x)(1,+∞)上恒成立,求实数m的取值范围;

(2)m2时,若函数k(x)f(x)h(x)在区间(1,3)上恰有两个不同零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心为原点,长轴在轴上,左顶点为,上、下焦点分别为,线段的中点分别为,且是斜边长为的直角三角形.

(1)若点在椭圆上,且为锐角,求的取值范围;

(2)过点作直线交椭圆于点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有三种股票前两种的股数之和等于第三种的股数, 第二种股票的总价值是第一种股票的4 第一二种股票的总价值等于第三种股票的总价值第二种股票每股比第一种股票贵元到2而第三种股票每股的价值不小于元而不大于6求在股票总量中第一种股票股数占总股数的百分比的最大值与最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆周上有800个点,依顺时针方向标号为,它们将圆周分成800个间隙.今选定某一点染成红色,然后按如下规则,逐次染红其余的一些点:如果第号点已被染红,则可按顺时针方向转过个间隙,再将所到达的那个端点染红.如此继续下去.试问圆周上最多可得到多少个红点?证明你的结论.

查看答案和解析>>

同步练习册答案