精英家教网 > 高中数学 > 题目详情
8.已知f(x)=2ax3+x2+2x+a.
(1)当a=0时,求函数的零点;
(2)证明对所有实数a,函数在区间(-1,1)上总有零点.

分析 (1)当a=0时,f(x)=x2+2x,令f(x)=0,解得函数的零点;
(2)由f(-1)•f(1)=-3(a+1)2≤0,结合函数零点存在定理,可得结论.

解答 解:(1)当a=0时,f(x)=x2+2x,
令f(x)=0,则x=0,或x=-2,
即当a=0时,函数的零点为0,或-2,
证明:(2)∵f(x)=2ax3+x2+2x+a.
∴f(-1)=-a-1,f(1)=3a+3,
∴f(-1)•f(1)=-3(a+1)2≤0.
当a=-1时,f(x)=-2x3+x2+2x-1,
此时f($-\frac{1}{2}$)=0,
当a≠-1时,f(-1)•f(1)<0,
故函数在区间(-1,1)上总有零点.

点评 本题考查的知识点是函数的零点,函数的零点存在定理,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=2f′(1)lnx-x,则f(x)的解析式为f(x)=2lnx-x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知指数函数y=g(x)满足g(3)=8,定义域为R的函数f(x)=$\frac{1-g(x)}{m+2g(x)}$是奇函数.
(1)确定y=f(x)和y=g(x)的解析式;
(2)判断函数f(x)的单调性,并用定义证明;
(3)若对任意x∈[-5,-1]都有f(1-x)+f(1-2x)>0成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A、B为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右顶点,C(0,b),直线l:x=2a与x轴交于点D,与直线AC交于点P,且BP平分角∠DBC,则椭圆的离心率为$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在等腰梯形ABCD中,已知AB∥CD,AB=4,BC=2,∠ABC=60°,动点E和F分别在线段BC和DC上,且$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{9λ}\overrightarrow{DC}$,当λ=$\frac{2}{3}$时,则$\overrightarrow{AE}$•$\overrightarrow{AF}$有最小值为$\frac{58}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.用符号语言表示下列语句.
(1)点A在平面α内,但在平面β外;
(2)直线α经过平面α外一点M;
(3)直线a在平面α内,又在平面β内,即平面α和β相交于直线a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线1的方程为x+(a-1)y+a2-1=0.
(1)若直线1不过第二象限,求实数a的取值范围;
(2)若直线1将圆x2+y2-2mx-4y=0平分,当m取得最大值时,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知a>1,函数f(x)=loga(x+1),g(x)=2loga(2x+t),当x∈(-1,1),t∈[4,6]时,存在g(x)≤f(x)+4成立,则a的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.等差数列6,4,2…的第n+1项是(  )
A.6+2nB.6-2nC.2n+4D.8-2n

查看答案和解析>>

同步练习册答案