精英家教网 > 高中数学 > 题目详情

【题目】某乐队参加一户外音乐节,准备从3首原创新曲和5首经典歌曲中随机选择4首进行演唱.
(1)求该乐队至少演唱1首原创新曲的概率;
(2)假定演唱一首原创新曲观众与乐队的互动指数为a(a为常数),演唱一首经典歌曲观众与乐队的互动指数为2a.求观众与乐队的互动指数之和 的概率分布及数学期望.

【答案】
(1)

解:设“至少演唱1首原创新曲”为事件

则事件 的对立事件 为:“没有1首原创新曲被演唱”.

所以

答:该乐队至少演唱1首原创新曲的概率为


(2)

设随机变量 表示被演唱的原创新曲的首数,则 的所有可能值为0,1,2,3.

依题意, ,故 的所有可能值依次为8a,7a,6a,5a.

从而 的概率分布为:

所以 的数学期望


【解析】(1.)从正面分析可能性太多可从反面分析即求出4首全是经典歌曲的概率,然后用1减去4首全是经典歌曲的概率。
(2.)由已知得X的可能取值为8a,7a,6a,5a分别求出相应的概率,由此能求出X的分布列及数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=aln(x+2)﹣x2在(0,1)内任取两个实数p,q,且p>q,若不等式 恒成立,则实数a的取值范围是(
A.(﹣∞,24]
B.(﹣∞,12]
C.[12,+∞)
D.[24,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足∠AFB= .设线段AB的中点M在l上的投影为N,则 的最大值是( )
A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.
(Ⅰ)若 ,求k的值;
(Ⅱ)求四边形AEBF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系 中,已知椭圆 的离心率为 ,C为椭圆上位于第一象限内的一点.

(1)若点 的坐标为 ,求a,b的值;
(2)设A为椭圆的左顶点,B为椭圆上一点,且 ,求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,a,b,c分别为角A,B,C的对边,csinC﹣asinA=( c﹣b)sinB.
(Ⅰ)求角A;
(Ⅱ)若a=1,求三角形ABC面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于下列四个命题
p1x0∈(0,+∞),( x0<( x0
p2x0∈(0,1), x0 x0
p3x∈(0,+∞),( x x
p4x∈(0, ),( x x.
其中的真命题是(
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)函数f(x)在区间(0,+∞)上是增函数还是减函数?证明你的结论;
(2)当x>0时, 恒成立,求整数k的最大值;
(3)试证明:(1+12)(1+23)(1+34)…(1+n(n+1))>e2n3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+ax+b(a,b∈R)在x=ln2处的切线方程为y=x﹣2ln2. (Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若k为差数,当x>0时,(k﹣x)f'(x)<x+1恒成立,求k的最大值(其中f'(x)为f(x)的导函数).

查看答案和解析>>

同步练习册答案