精英家教网 > 高中数学 > 题目详情

【题目】是两个平面,mn是两条直线,有下列四个命题;

①如果,那么.

②如果,那么.

③如果,那么.

④如果,那么m所成的角和n所成的角相等.

其中正确的命题的个数为(

A.1B.2C.3D.4

【答案】C

【解析】

对①,运用长方体模型,找出符合条件的直线和平面,即可判断;

对②,运用线面平行的性质定理和线面垂直的性质定理,即可判断;

对③,运用面面平行的性质定理,即可判断;

对④,由平行的传递性及线面角的定义,即可判断④.

对于命题①,可运用长方体举反例证明其错误:如图,

不妨设为直线m为直线n所在的平面为所在的平面为,显然这些直线和平面满足题目条件,但不成立;

命题②正确,证明如下:设过直线n的某平面与平面相交于直线l,则,由,从而,结论正确;

由平面与平面平行的定义知命题如果,那么.③正确;

由平行的传递性及线面角的定义知命题:如果,那么m所成的角和n所成的角相等,④正确.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2009年以来,菜鸟网络物流和淘宝商城双十一活动已经走过十年,某数学兴趣小组收集了近五年双十一当天菜鸟网络物流订单数据如下表.并且查知这五年订单数的平均数约为6.5亿件.

年份代码

1

2

3

4

5

年份

2014

2015

2016

2017

2018

订单数(亿件)

2.8

4.7

8.1

10.4

1)现发现表中一个数据看不清,试求出表中的值,并根据收集的这些数据和下列有关参考数据说明函数中,哪一个类型更适合关于的回归方程;

2)依据你的判断,求关于的回归方程;

3)预测菜鸟网络物流2019年的订单数.

参考数据:

订单数(亿件)

2.8

4.7

8.1

10.4

1.03

1.55

1.87

2.09

2.34

.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且)在上单调递增,且关于的方程恰有两个不相等的实数解,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为,焦距为2,抛物线的准线经过C的左焦点F.

1)求CM的方程;

2)直线l经过C的上顶点且lM交于PQ两点,直线FPFQM分别交于点D(异于点P),E(异于点Q),证明:直线DE的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)当时,若函数的图象有且仅有一个交点,求的值(其中表示不超过的最大整数,如.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若抛物线的焦点是,准线是,点是抛物线上一点,则经过点且与相切的圆共( )

A. 0个 B. 1个 C. 2个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年是中国改革开放的第40周年,为了充分认识新形势下改革开放的时代性,某地的民调机构随机选取了该地的100名市民进行调查,将他们的年龄分成6段:,并绘制了如图所示的频率分布直方图.

(1)现从年龄在内的人员中按分层抽样的方法抽取8人,再从这8人中随机抽取3人进行座谈,用表示年龄在内的人数,求的分布列和数学期望;

(2)若用样本的频率代替概率,用随机抽样的方法从该地抽取20名市民进行调查,其中有名市民的年龄在的概率为.当最大时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,过坐标原点作两条互相垂直的射线与椭圆分别交于两点.

1)证明:当取得最小值时,椭圆的离心率为.

2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某产品的年固定成本为250万元,每生产千件,需另投入成本(万元),若年产量不足千件, 的图像是如图的抛物线,此时的解集为,且的最小值是,若年产量不小于千件, ,每千件商品售价为50万元,通过市场分析,该厂生产的商品能全部售完;

(1)写出年利润(万元)关于年产量(千件)的函数解析式;

(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

同步练习册答案