精英家教网 > 高中数学 > 题目详情
6.方程2x=$\sqrt{2}$的解=$\frac{1}{2}$.

分析 利用有理数指数幂的性质、运算法则直接求解.

解答 解:∵2x=$\sqrt{2}$=${2}^{\frac{1}{2}}$,
∴x=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查指数方程的解法,是基础题,解题时要认真审题,注意有理数指数幂的性质、运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某制造商制造并出售球形瓶装的某种饮料.瓶子的制造成本是0.8πr2分,其中r是瓶子的半径,单位是cm.已知每出售1ml的饮料,制造商可获利0.2分,且制造商能制做的瓶子的最大半径为6cm.
问题:瓶子半径多大时,能使每瓶饮料的利润最大?瓶子半径多大时,每瓶饮料的利润最小?$({V_球}=\frac{4}{3}π{r^3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给出下列三个命题:
①函数y=tanx在第一象限是增函数
②奇函数的图象一定过原点
③函数y=sin2x+cos2x的最小正周期为π
④函数y=x+$\frac{2}{x}$的最小值为2$\sqrt{2}$
其中 假命题的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知F1、F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,A是椭圆上一动点,满足:
①∠F1AF2的最大值为60°
 ②若圆C与F1A的延长线、F1F2的延长线以及线段AF2相切,则M(2,0)为其中一个切点,则椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.甲、乙 两人独立地破译一个密码,他们能译出密码的概率分别为$\frac{1}{3}和\frac{1}{4}$,求:
(Ⅰ) 两个人都能译出密码的概率;
(Ⅱ) 恰有一个人译出密码的概率;
(Ⅲ) 至多有一个人译出密码的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)满足f(x-1)=x2,则f(x)的解析式为(  )
A.f(x)=(x+1)2B.f(x)=(x-1)2C.f(x)=x2+1D.f(x)=x2-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在${({\frac{{\sqrt{x}}}{2}-\frac{2}{{\sqrt{x}}}})^n}$的展开式中二项式系数的和为64,则展开式中x2项的系数为$-\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过y2=4x的焦点作直线交抛物线于A,B两点,若O为坐标原点,则$\overrightarrow{OA}$•$\overrightarrow{OB}$=(  )
A.-1B.-2C.-3D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知幂函数$f(x)={x^{{m^2}-2m-3}}(m∈Z)$为偶函数,且在区间(0,+∞)上减函数,则m的值为(  )
A.-1<m<3B.1C.1或2D.0或1或2

查看答案和解析>>

同步练习册答案