精英家教网 > 高中数学 > 题目详情
12.已知f(x)=-cos2x+$\sqrt{3}$sinxcosx
(Ⅰ)求函数f(x)的最小值并求函数取得最小值时自变量x的值;
(Ⅱ)求函数f(x)的单调增区间.

分析 (Ⅰ)利用二倍角和辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,结合三角函数的图象和性质,求出f(x)的最小值.
(Ⅱ)将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;

解答 解:(Ⅰ)由f(x)=-cos2x+$\sqrt{3}$sinxcosx
化简:$f(x)=-\frac{1+cos2x}{2}+\frac{{\sqrt{3}}}{2}sin2x$=$sin(2x-\frac{π}{6})-\frac{1}{2}$
令$2x-\frac{π}{6}=2kπ-\frac{π}{2},k∈Z$,
解得$x=kπ-\frac{π}{6},k∈Z$
故当$x∈\left\{{x|x=kπ-\frac{π}{6},k∈Z}\right\}$时,函数f(x)的最小值为$-\frac{3}{2}$.
(Ⅱ) 令$t=2x-\frac{π}{6}$,函数y=sint的单调增区间为$[-\frac{π}{2}+2kπ,\frac{π}{2}+2kπ]$,
由$-\frac{π}{2}+2kπ≤2x-\frac{π}{6}≤\frac{π}{2}+2kπ$,(k∈Z)
解得:$-\frac{π}{6}+kπ≤x≤\frac{π}{3}+kπ$
∴$y=sin(2x-\frac{π}{6})-\frac{1}{2}$的单调增区间为$[-\frac{π}{6}+kπ,\frac{π}{3}+kπ](k∈Z)$

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知A={2,4,5},B={1,3,5,7},则A∩B=(  )
A.{5}B.{2,4}C.{2,5}D.{2,4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=|x|,则下列结论正确的是(  )
A.奇函数,在(-∞,0)上是减函数B.奇函数,在(-∞,0)上是增函数
C.偶函数,在(-∞,0)上是减函数D.偶函数,在(-∞,0)上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a∈R,若方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则此圆心坐标(  )
A.(-2,-4)B.$(-\frac{1}{2},-1)$C.(-2,-4)或$(-\frac{1}{2},-1)$D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知A={x|x+1>0},B={-2,-1,0,1},则(∁RA)∩B=(  )
A.A={0,1,2}B.{-2}C.{-1,0,1}D.{-2,-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知F是抛物线E:y2=4x的焦点,过点F的直线交抛物线E于P,Q两点,线段PQ的中垂线仅交x轴于点M,则使|MF|=λ|PQ|恒成立的实数λ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=3sin(2x-$\frac{π}{3}$)的图象为C,如下结论中正确的是①②③.
①图象C关于直线x=$\frac{11}{12}$π对称;      
②函数f(x)在区间(-$\frac{π}{12}$,$\frac{5π}{12}$)内是增函数;
③图象C关于点($\frac{2π}{3}$,0)对称;   
④由y=3sin2x图象向右平移$\frac{π}{3}$个单位可以得到图象C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆M上一点A(1,-1)关于直线y=x的对称点仍在圆M上,直线x+y-1=0截得圆M的弦长为$\sqrt{14}$.
(1)求圆M的方程;
(2)设P是直线x+y+2=0上的动点,PE、PF是圆M的两条切线,E、F为切点,求四边形PEMF面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lg(mx-2x)(0<m<1).
(1)当m=$\frac{1}{2}$时,求f(x)的定义域.
(2)若f(x)在(-∞,-1]上恒取正值,求m的取值范围.

查看答案和解析>>

同步练习册答案