分析 (1)取B1C1,BC1的中点E,F,连结A1E,EF,DF,推导出DF∥A1E,A1E⊥B1C1,A1E⊥B1B,从而DF⊥平面BB1C1C,由此能证明平面BDC1⊥平面BB1C1C.
(2)由题意知四棱锥B-ACC1D与四棱锥C1-A1B1BD等低等高,且${V}_{ABC-{A}_{1}{B}_{1}{C}_{1}}$=${V}_{B-AC{C}_{1}D}+{V}_{{C}_{1}-{A}_{1}{B}_{1}BD}$,从而四棱锥B-ACC1D的体积${V}_{B-AC{C}_{1}D}=\frac{1}{2}{V}_{ABC-{A}_{1}{B}_{1}{C}_{1}}$,由此能求出结果.
解答 证明:(1)如图,在直三棱柱ABC-A1B1C1中,
分别取B1C1,BC1的中点E,F,
连结A1E,EF,DF,
∵D是AA1的中点,∴由已知得EF∥DA1,且EF=DA1,
则四边形形DA1EF为平行四边形形,∴DF∥A1E,
由AB=AC,得A1B1=A1C1,∴A1E⊥B1C1,
在直三棱柱ABC-A1B1C1中,
∵B1B⊥平面A1B1C1,∴A1E⊥B1B,又B1C1∩B1B=B1,
∴A1E⊥平面BB1C1C,∴DF⊥平面BB1C1C,
又DF?平面BDC1,
∴平面BDC1⊥平面BB1C1C.
解:(2)由题意知四棱锥B-ACC1D与四棱锥C1-A1B1BD等低等高,
且${V}_{ABC-{A}_{1}{B}_{1}{C}_{1}}$=${V}_{B-AC{C}_{1}D}+{V}_{{C}_{1}-{A}_{1}{B}_{1}BD}$,
∴${V}_{B-AC{C}_{1}D}=\frac{1}{2}{V}_{ABC-{A}_{1}{B}_{1}{C}_{1}}$,
∵A1B1=A1C1=5,B1C1=8,
∴B1C边上的高为3,
∴${S}_{△{B}_{1}{A}_{1}{C}_{1}}$=$\frac{1}{2}×3×8$=12,
∴四棱锥B-ACC1D的体积${V}_{B-AC{C}_{1}D}=\frac{1}{2}{V}_{ABC-{A}_{1}{B}_{1}{C}_{1}}$=$\frac{1}{2}×12×8$=48.
点评 本题考查面面垂直的证明,考查四棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a2 | B. | $\frac{{\sqrt{3}}}{2}{a^2}$ | C. | $\sqrt{3}{a^2}$ | D. | $\frac{{\sqrt{3}}}{4}{a^2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0≤α≤$\frac{π}{4}$ | B. | $\frac{π}{2}$<α<π | C. | $\frac{π}{4}$≤α<$\frac{π}{2}$ | D. | $\frac{π}{2}$<α≤$\frac{3π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 15 | B. | 27 | C. | 135 | D. | 165 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com