【题目】抛物线的方程为,过抛物线上一点作斜率为的两条直线分别交抛物线于两点(三点互不相同),且满足:
(1)求抛物线的焦点坐标和准线方程;
(2)当时,若点的坐标为,求为钝角时点的纵坐标的取值范围;
(3)设直线上一点,满足,证明线段的中点在轴上;
【答案】(1)焦点,准线;(2)或;(3)证明见解析;
【解析】
(1)数形结合,依据抛物线C的标准方程写出焦点坐标和准线方程;
(2)为钝角时,必有,用表示,通过的范围可得的范围;
(3)先根据条件求出点M的横坐标,利用一元二次方程根与系数的关系,证明,可得的中点在轴上.
解:(1)由抛物线的方程为可得,焦点,准线;
(2)由点在上,可得,所以抛物线为,
设直线的直线方程,直线的直线方程,
点与是方程组的解,将②式代入①式得,
,可得 ③,可得
点与是方程组的解,将⑤式代入⑤式得,
,可得 ,,
由已知得:,则 ⑥,
由③可得,代入,可得,
将代入⑥可得,代入,可得,
可得直线、分别与抛物线C得交点坐标为,
,于是,,
,
因为为钝角且三点互不相同,故必有,
可得得取值范围是,或,
又点得纵坐标满足,当,;
当时,,
故的取值范围:或;
(3)设点得坐标为,由,则,
将③与⑥式代入可得:,即,即线段的中点在轴上.
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的左右焦点分别为,,点在椭圆上,且.
(1)求椭圆的方程;
(2)点P,Q在椭圆上,O为坐标原点,且直线,的斜率之积为,求证:为定值;
(3)直线l过点且与椭圆交于A,B两点,问在x轴上是否存在定点M,使得为常数?若存在,求出点M坐标以及此常数的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列与满足,.
(1)若,求数列的通项公式;
(2)若,且数列是公比等于2的等比数列,求的值,使数列也是等比数列;
(3)若,且,数列有最大值与最小值,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产的某批产品的销售量万件(生产量与销售量相等)与促销费用万元满足(其中,为正常数).已知生产该产品还需投入成本万元(不含促销费用),产品的销售价格定为元件.
(1)将该产品的利润万元表示为促销费用万元的函数;
(2)促销费用投入多少万元时,该公司的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于双曲线,若点P(x0,y0)满足,则称P在的外部,若点P(x0,y0)满足>1,则称在的内部;
(1)若直线y=kx+1上的点都在C(1,1)的外部,求k的取值范围;
(2)若C(a,b)过点(2,1),圆x2+y2=r2(r>0)在C(a,b)内部及C(a,b)上的点构成的圆弧长等于该圆周长的一半,求b、r满足的关系式及r的取值范围;
(3)若曲线|xy|=mx2+1(m>0)上的点都在C(a,b)的外部,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电器专卖店销售某种型号的空调,记第天(,)的日销售量为(单位;台).函数图象中的点分别在两条直线上,如图,该两直线交点的横坐标为,已知时,函数.
(1)当时,求函数的解析式;
(2)求的值及该店前天此型号空调的销售总量;
(3)按照经验判断,当该店此型号空调的销售总量达到或超过台,且日销售量仍持续增加时,该型号空调开始旺销,问该店此型号空调销售到第几天时,才可被认为开始旺销?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
(本题满分15分)已知m>1,直线,
椭圆,分别为椭圆的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆交于两点,,
的重心分别为.若原点在以线段
为直径的圆内,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列和满足:,,且对一切,均有.
(1)求证:数列为等差数列,并求数列的通项公式;
(2)求数列的前项和;
(3)设,记数列的前项和为,求正整数,使得对任意,均有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列首项和公差都是,记的前n项和为,等比数列各项均为正数,公比为q,记的前n项和为:
(1)写出构成的集合A;
(2)若将中的整数项按从小到大的顺序构成数列,求的一个通项公式;
(3)若q为正整数,问是否存在大于1的正整数k,使得同时为(1)中集合A的元素?若存在,写出所有符合条件的的通项公式,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com