精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x2+3x(x≥0)
g(x)   (x<0)
为奇函数,则f(g(-1))=
 
考点:函数奇偶性的性质,函数的值
专题:函数的性质及应用
分析:由已知得g(x)=-f(-x)=-(x2-3x)=-x2+3x,从而g(-1)=-1-3=-4,f(g(-1))=f(-4)=g(-4)=-16-12=-28.
解答: 解:∵函数f(x)=
x2+3x(x≥0)
g(x)   (x<0)
为奇函数,
∴g(x)=-f(-x)=-(x2-3x)=-x2+3x,
g(-1)=-1-3=-4,
f(g(-1))=f(-4)=g(-4)=146-12=-28.
故答案为:-28.
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,A=120°,b=1,△ABC的面积为
3
,则
a+b
sinA+sinB
=(  )
A、
21
B、
2
39
3
C、2
21
D、2
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是等比数列,其中a1,a8是关于x的方程x2-2xsinα-
3
sinα=0的两根,且(a1+a82=2a3a6+6,则锐角α的值为(  )
A、
π
6
B、
π
4
C、
π
3
D、
12

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:2log52+log5
5
4
+loge
e
+3
1
2
×
3
4
×21-log23

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
2x-1,(x≥2)
-x2+3x,(x<2)
,则f(-1)+f(4)的值是(  )
A、-7B、3C、-8D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=
(5-m)x+1,(x≤0)
mx+m-1,(x>0)
,若f(x)在(-∞,+∞)上单调递增,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域是[0,1],则函数f(x2)的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x+1<0},B={x|x-3<0},那么集合A∪B等于(  )
A、{x|x<-3}
B、{x|x<3}
C、{x|x<-1}
D、{x|-1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C的中心在原点,焦点在x轴上,离心率为
6
3
,并与直线y=x+2相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)如图,过圆D:x2+y2=4上任意一点P作椭圆C的两条切线m,n. 求证:m⊥n.

查看答案和解析>>

同步练习册答案