精英家教网 > 高中数学 > 题目详情

【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

喜爱打篮球

不喜爱打篮球

合计

男生

5

女生

10

合计

50

已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为

(1)请将上面的列联表补充完整;

(2)是否有99%的把握认为“喜爱打篮球与性别有关”?说明你的理由.

【答案】(1)见解析; (2)有99%的把握认为“喜爱打篮球与性别有关”.

【解析】

1)利用题干中所给的条件即可求出填表即可;

2)求出 ,然后判断是否有99%的把握认为“喜爱打篮球与性别有关”。

(1)因为在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为

所以喜爱打篮球的总人数为人,

所以补充完整的列联表如下:

喜爱打篮球

不喜爱打篮球

合计

男生

15

5

20

女生

10

20

30

合计

25

25

50

(2)根据列联表可得的观测值

所以有99%的把握认为“喜爱打篮球与性别有关”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax3-3ax,g(x)=bx2-ln x(a,b∈R),已知它们在x=1处的切线互相平行.

(1)求b的值;

(2)若函数且方程F(x)=a2有且仅有四个解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某幼儿园雏鹰班的生活老师统计2018年上半年每个月的20日的昼夜温差和患感冒的小朋友人数(/人)的数据如下:

温差

患感冒人数

8

11

14

20

23

26

其中.

(Ⅰ)请用相关系数加以说明是否可用线性回归模型拟合的关系;

(Ⅱ)建立关于的回归方程(精确到),预测当昼夜温差升高时患感冒的小朋友的人数会有什么变化?(人数精确到整数)

参考数据:.参考公式:相关系数:,回归直线方程是 ,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列满足,且的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,对任意正数数 恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若函数上是增函数,求正数的取值范围;

(2)当时,设函数的图象与x轴的交点为,曲线两点处的切线斜率分别为,求证:+ .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0123四个相同小球的抽奖箱中,每次取出一球,记下编号后放回,连续取两次,若取出的两个小球号码之和等于6,则中一等奖,等于5中二等奖,等于43中三等奖.

1)求中三等奖的概率;

2)求中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知4名学生和2名教师站在一排照相,求:

(1)中间二个位置排教师,有多少种排法?

(2)首尾不排教师,有多少种排法?

(3)两名教师不站在两端,且必须相邻,有多少种排法?

(4)两名教师不能相邻的排法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在边长为60 cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若x4(x+4)8=a0+a1(x+3)+a2(x+3)2+…+a12(x+3)12,则log2(a1+a3+…+a11)=( ).

A. 4B. 8C. 12D. 11

查看答案和解析>>

同步练习册答案