精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12分)如图,在多面体中,底面是边长为的的菱形, ,四边形是矩形,平面平面分别是的中点.

)求证:平面平面

)求二面角的大小.

【答案】)证明见解析;

【解析】试题分析:第一问根据三角形的中位线找到平行线,利用面面平行的判定定理,在其中一个平面内找到和另一个平面平行的两条相交直线,证得结果,第二问先在几何体中找到共点的相互垂直的三条直线,建立相应的空间直角坐标系,求得面的法向量,利用面的法向量所成的角的余弦值判断求得二面角的余弦值,结合二面角的取值范围,求得二面角的大小.

试题解析:()证明:在中,因为分别是的中点,

所以, 又因为平面平面

所以平面. 设,连接

因为为菱形,所以中点

中,因为

所以

又因为平面平面

所以平面. 又因为平面

所以平面平面

)解:取的中点,连接,因为四边形是矩形, 分别为的中点,

所以,因为平面平面,所以平面

所以平面,因为为菱形,所以,得两两垂直.

所以以为原点, 所在直线分别为轴, 轴, 轴,如图建立空间直角坐标系.

因为底面是边长为的菱形, ,所以.所以.设平面的法向量为,则.令,得

平面,得平面的法向量为,则

所以二面角的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,若互不相等的实数x1 , x2 , x3满足f(x1)=f(x2)=f(x3),则x1+x2+x3的取值范围是(
A.( ]
B.(
C.( ]
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2=9A(-5,0)直线l:x-2y=0.

(1)求与圆C相切且与直线l垂直的直线方程;

(2)在直线OA上(O为坐标原点)存在定点B(不同于点A)满足:对于圆C上任一点P都有一常数,试求所有满足条件的点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= (x>0),观察:
f1(x)=f(x)=
f2(x)=f(f1(x))=
f3(x)=f(f2(x))=
f4(x)=f(f3(x))=

根据以上事实,当n∈N*时,由归纳推理可得:fn(1)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元,距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如图频率分布直方图:
附:临界值参考公式: ,n=a+b+c+d.

(1)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(2)小明向班级同学发出倡议,为该小区居民损款,现从损失超过4000元的居民中随机抽出2户进行捐款援助,投抽出损失超过8000元的居民为ξ户,求ξ的分布列和数学期望;
(3)台风后区委会号召该小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如表,在表格空白外填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?

经济损失不超过4000元

经济损失超过4000元

合计

捐款超过500元

30

损款不超过500元

6

合计

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为椭圆C 的左、右焦点,点 在椭圆上,且 轴,的周长为6.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)E,F是椭圆C上异于点的两个动点,如果直线PE与直线PF的倾斜角互补,证明:直线EF的斜率为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知点A(-1,-2),B(1,3),P为x轴上的一点,求|PA|+|PB|的最小值;

(2)已知点A(2,2),B(3,4),P为x轴上一点,求||PB|-|PA||的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在路边安装路灯,灯柱的高为米,路宽为23米,灯杆与灯柱角,路灯采用锥形灯罩,灯罩轴线与灯杆垂直,请你建立适当直角坐标系,解决以下问题:

(1)当

(2)且灯罩轴线正好通过道路路面的中线时,求灯杆的长为多少米?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C上任意一点到的距离与到点 的距离之比均为.

(1)求曲线C的方程;

(2)设点,过点作两条相异直线分别与曲线C相交于两点,且直线和直线的倾斜角互补,求线段的最大值.

查看答案和解析>>

同步练习册答案