精英家教网 > 高中数学 > 题目详情
2.已知正项数列{an}的前n项的和为Sn,且满足:$2{S_n}={a_n}^2+a{\;}_n$,(n∈N+
(1)求a1,a2,a3的值
(2)求数列{an}的通项公式.

分析 (1)分别在已知数列递推式中取n=1、2、3,结合an>0求得a1,a2,a3的值;
(2)由$2{S_n}={a_n}^2$+an,得$2{S}_{n+1}={{a}_{n+1}}^{2}+{a}_{n+1}$,两式作差后,可得{an}是首项为1,公差为1的等差数列,再由等差数列的通项公式得答案.

解答 解:(1)由$2{S_n}={a_n}^2+a{\;}_n$,取n=1,得$2{S}_{1}=2{a}_{1}={{a}_{1}}^{2}+{a}_{1}$,
∵an>0,得a1=1,
取n=2,得$2(1+{a}_{2})={{a}_{2}}^{2}+{a}_{2}$,解得a2=2,
取n=3,得$2(1+2+{a}_{3})={{a}_{3}}^{2}+{a}_{3}$,解a3=3;
(2)∵$2{S_n}={a_n}^2$+an,①
∴$2{S}_{n+1}={{a}_{n+1}}^{2}+{a}_{n+1}$,②
②-①得 (an+1+an)(an+1-an-1)=0,
∵an>0,∴an+1+an>0,则an+1-an=1,
∴{an}是首项为1,公差为1的等差数列,
∴an=1+(n-1)×1=n.

点评 本题考查数列递推式,考查了等差关系的确定,训练了等差数列通项公式的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.将函数y=5sin(2x+$\frac{π}{4}$)的图象向左平移φ(0<φ<$\frac{π}{2}$)个单位后,所得函数图象关于y轴对称,则φ=$\frac{π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某公司的管理者通过公司近年来科研费用支出x(百万元)与公司所获得利润y(百万元)的散点图发现,y与x之间具有线性相关关系,具体数据如表:
年份20102011201220132014
科研费用x(百万元)1.61.71.81.92.0
公司所获利润y(百万元)11.522.53
(1)求y对x的回归直线方程;(参考数据:$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=16.3,$\sum_{i=1}^{5}$xiyi=18.5)
(2)若该公司的科研投入从2011年开始连续10年每一年都比上一年增加10万元,预测2017年该公司可获得的利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知θ为第二象限角,且$tan(θ-\frac{π}{4})=3$,则sinθ+cosθ=$\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设命题P:?x∈R,x2+2>0.则¬P为(  )
A.$?{x_0}∈R,{x_0}^2+2>0$B.$?{x_0}∈R,{x_0}^2+2≤0$
C.$?{x_0}∈R,{x_0}^2+2<0$D.?x∈R,x2+2≤0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数$f(x)=\frac{x^2}{2}-klnx,k>0$的单调增区间为$({\sqrt{k},+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知直线l1:3x+2y+1=0,l2:x-2y-5=0,设直线l1,l2的交点为A,则点A到直线${l_0}:y=-\frac{3}{4}x-\frac{5}{2}$的距离为(  )
A.1B.3C.$\frac{{5\sqrt{7}}}{7}$D.$\frac{{15\sqrt{7}}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直三棱柱ABC-A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于(  )
A.20πB.10πC.D.5$\sqrt{5}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“k=1”是“直线$kx-y-3\sqrt{2}=0$与圆x2+y2=9相切”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案